Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri.
Stat Med. 2019 May 20;38(11):2030-2046. doi: 10.1002/sim.8085. Epub 2019 Jan 6.
Most studies characterize longitudinal biomarker trajectories by looking forward at them from a commonly used time origin, such as the initial treatment time. For a better understanding of the relationship between biomarkers and disease progression, we propose to align all subjects by using their disease progression time as the origin and then looking backward at the biomarker distributions prior to that event. We demonstrate that such backward-looking plots are much more informative than forward-looking plots when the research goal is to understand the shape of the trajectory leading up to the event of interest. Such backward-looking plotting is an easy task if disease progression is observed for all the subjects. However, when these events are censored for a significant proportion of subjects in the study cohort, their time origins cannot be identified, and the task of aligning them cannot be performed. We propose a new method to tackle this problem by considering the distributions of longitudinal biomarker data conditional on the failure time. We use landmark analysis models to estimate these distributions. Compared to a naïve method, our new method greatly reduces estimation bias. We apply our method to a study for chronic myeloid leukemia patients whose BCR-ABL transcript expression levels after treatment are good indicators of residual disease. Our proposed method provides a good visualization tool for longitudinal biomarker studies for the early detection of disease.
大多数研究通过从常用的时间原点向前观察来描述纵向生物标志物轨迹,例如初始治疗时间。为了更好地理解生物标志物与疾病进展之间的关系,我们建议通过使用疾病进展时间作为原点来对所有受试者进行对齐,然后回溯观察该事件之前的生物标志物分布。我们证明,当研究目标是了解导致感兴趣事件的轨迹形状时,这种回溯绘图比前向绘图更有信息量。如果所有受试者的疾病进展都被观察到,那么这种回溯绘图是一项简单的任务。然而,当研究队列中很大一部分受试者的这些事件被删失时,他们的时间原点无法确定,对齐他们的任务也无法执行。我们提出了一种新的方法来解决这个问题,方法是考虑纵向生物标志物数据在失败时间条件下的分布。我们使用地标分析模型来估计这些分布。与简单的方法相比,我们的新方法大大降低了估计偏差。我们将我们的方法应用于一项慢性髓性白血病患者的研究,他们治疗后的 BCR-ABL 转录本表达水平是残留疾病的良好指标。我们提出的方法为纵向生物标志物研究提供了一种很好的可视化工具,用于早期发现疾病。