Suppr超能文献

使用临床直线加速器进行多束扫描分析,用于组织中的高分辨率切伦科夫激发分子发光成像。

Multi-beam scan analysis with a clinical LINAC for high resolution Cherenkov-excited molecular luminescence imaging in tissue.

作者信息

Jia Mengyu Jeremy, Bruza Petr, Jarvis Lesley A, Gladstone David J, Pogue Brian W

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.

Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.

出版信息

Biomed Opt Express. 2018 Aug 14;9(9):4217-4234. doi: 10.1364/BOE.9.004217. eCollection 2018 Sep 1.

Abstract

Cherenkov-excited luminescence scanned imaging (CELSI) is achieved with external beam radiotherapy to map out molecular luminescence intensity or lifetime in tissue. Just as in fluorescence microscopy, the choice of excitation geometry can affect the imaging time, spatial resolution and contrast recovered. In this study, the use of spatially patterned illumination was systematically studied comparing scan shapes, starting with line scan and block patterns and increasing from single beams to multiple parallel beams and then to clinically used treatment plans for radiation therapy. The image recovery was improved by a spatial-temporal modulation-demodulation method, which used the ability to capture simultaneous images of the excitation Cherenkov beam shape to deconvolve the CELSI images. Experimental studies used the multi-leaf collimator on a clinical linear accelerator (LINAC) to create the scanning patterns, and image resolution and contrast recovery were tested at different depths of tissue phantom material. As hypothesized, the smallest illumination squares achieved optimal resolution, but at the cost of lower signal and slower imaging time. Having larger excitation blocks provided superior signal but at the cost of increased radiation dose and lower resolution. Increasing the scan beams to multiple block patterns improved the performance in terms of image fidelity, lower radiation dose and faster acquisition. The spatial resolution was mostly dependent upon pixel area with an optimized side length near 38mm and a beam scan pitch of = 0.33, and the achievable imaging depth was increased from 14mm to 18mm with sufficient resolving power for 1mm sized test objects. As a proof-of-concept, tumor mouse imaging was performed to show 3D rendering and quantification of tissue pO with values of 5.6mmHg in a tumor and 77mmHg in normal tissue.

摘要

切伦科夫激发发光扫描成像(CELSI)通过外照射放疗实现,用于绘制组织中的分子发光强度或寿命。与荧光显微镜一样,激发几何结构的选择会影响成像时间、空间分辨率和恢复的对比度。在本研究中,系统地研究了空间图案照明的使用,比较了扫描形状,从线扫描和块状图案开始,从单束增加到多束平行光束,然后到放射治疗的临床使用治疗计划。通过时空调制解调方法改善了图像恢复,该方法利用捕获激发切伦科夫光束形状的同步图像的能力对CELSI图像进行去卷积。实验研究使用临床直线加速器(LINAC)上的多叶准直器创建扫描图案,并在组织模体材料的不同深度测试图像分辨率和对比度恢复。正如所假设的,最小的照明方块实现了最佳分辨率,但代价是信号较低和成像时间较慢。具有较大的激发块提供了更好的信号,但代价是辐射剂量增加和分辨率降低。将扫描光束增加到多个块状图案在图像保真度、较低辐射剂量和更快采集方面提高了性能。空间分辨率主要取决于像素面积,优化边长接近38mm,光束扫描间距为 = 0.33,对于1mm大小的测试物体,可实现的成像深度从14mm增加到18mm,具有足够的分辨能力。作为概念验证,进行了肿瘤小鼠成像,以显示肿瘤组织pO的三维渲染和定量,肿瘤中的值为5.6mmHg,正常组织中的值为77mmHg。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec7d/6157777/b03f1179a252/boe-9-9-4217-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验