Suppr超能文献

基于杂交测序的个体全长转录组分析提示蛋白质稳态应激与转移性卵巢癌相关。

Hybrid sequencing-based personal full-length transcriptomic analysis implicates proteostatic stress in metastatic ovarian cancer.

机构信息

State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Oncogene. 2019 Apr;38(16):3047-3060. doi: 10.1038/s41388-018-0644-y. Epub 2019 Jan 7.

Abstract

Comprehensive molecular characterization of myriad somatic alterations and aberrant gene expressions at personal level is key to precision cancer therapy, yet limited by current short-read sequencing technology, individualized catalog of complete genomic and transcriptomic features is thus far elusive. Here, we integrated second- and third-generation sequencing platforms to generate a multidimensional dataset on a patient affected by metastatic epithelial ovarian cancer. Whole-genome and hybrid transcriptome dissection captured global genetic and transcriptional variants at previously unparalleled resolution. Particularly, single-molecule mRNA sequencing identified a vast array of unannotated transcripts, novel long noncoding RNAs and gene chimeras, permitting accurate determination of transcription start, splice, polyadenylation and fusion sites. Phylogenetic and enrichment inference of isoform-level measurements implicated early functional divergence and cytosolic proteostatic stress in shaping ovarian tumorigenesis. A complementary imaging-based high-throughput drug screen was performed and subsequently validated, which consistently pinpointed proteasome inhibitors as an effective therapeutic regime by inducing protein aggregates in ovarian cancer cells. Therefore, our study suggests that clinical application of the emerging long-read full-length analysis for improving molecular diagnostics is feasible and informative. An in-depth understanding of the tumor transcriptome complexity allowed by leveraging the hybrid sequencing approach lays the basis to reveal novel and valid therapeutic vulnerabilities in advanced ovarian malignancies.

摘要

全面的分子特征分析,包括个人水平上的无数体细胞改变和异常基因表达,是精准癌症治疗的关键,但受到当前短读测序技术的限制,完整基因组和转录组特征的个体化目录至今仍难以实现。在这里,我们整合了第二代和第三代测序平台,为一名患有转移性上皮性卵巢癌的患者生成了多维数据集。全基因组和混合转录组剖析以前所未有的分辨率捕获了全局遗传和转录变体。特别是,单分子 mRNA 测序鉴定出大量未注释的转录本、新型长非编码 RNA 和基因嵌合体,从而能够准确确定转录起始、剪接、多聚腺苷酸化和融合位点。同种型水平测量的系统发育和富集推断表明,早期的功能分化和细胞质蛋白稳态应激在塑造卵巢肿瘤发生中起作用。还进行了补充的基于成像的高通量药物筛选,并随后进行了验证,该筛选一致指出蛋白酶体抑制剂通过在卵巢癌细胞中诱导蛋白质聚集体是一种有效的治疗方案。因此,我们的研究表明,新兴的长读全长分析在提高分子诊断中的临床应用是可行和有信息的。通过利用混合测序方法深入了解肿瘤转录组的复杂性,为揭示晚期卵巢恶性肿瘤中的新的和有效的治疗弱点奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验