Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), C/Casanova 143, Cellex, P2A, 08036, Barcelona, Spain.
Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.
Respir Res. 2019 Jan 8;20(1):5. doi: 10.1186/s12931-018-0965-y.
Previous studies have identified lung, sputum or blood transcriptomic biomarkers associated with the severity of airflow limitation in COPD. Yet, it is not clear whether the lung pathobiology is mirrored by these surrogate tissues. The aim of this study was to explore this question.
We used Weighted Gene Co-expression Network Analysis (WGCNA) to identify shared pathological mechanisms across four COPD gene-expression datasets: two sets of lung tissues (L1 n = 70; L2 n = 124), and one each of induced sputum (S; n = 121) and peripheral blood (B; n = 121).
WGCNA analysis identified twenty-one gene co-expression modules in L1. A robust module preservation between the two L datasets was observed (86%), with less preservation in S (33%) and even less in B (23%). Three modules preserved across lung tissues and sputum (not blood) were associated with the severity of airflow limitation. Ontology enrichment analysis showed that these modules included genes related to mitochondrial function, ion-homeostasis, T cells and RNA processing. These findings were largely reproduced using the consensus WGCNA network approach.
These observations indicate that major differences in lung tissue transcriptomics in patients with COPD are poorly mirrored in sputum and are unrelated to those determined in blood, suggesting that the systemic component in COPD is independently regulated. Finally, the fact that one of the preserved modules associated with FEV1 was enriched in mitochondria-related genes supports a role for mitochondrial dysfunction in the pathobiology of COPD.
先前的研究已经确定了与 COPD 气流受限严重程度相关的肺部、痰液或血液转录组生物标志物。然而,这些替代组织是否反映了肺部的病理生物学尚不清楚。本研究旨在探讨这一问题。
我们使用加权基因共表达网络分析(WGCNA)来识别四个 COPD 基因表达数据集(两组肺组织[L1 n=70;L2 n=124],一组诱导痰[S;n=121]和一组外周血[B;n=121])之间的共同病理机制。
WGCNA 分析在 L1 中确定了 21 个基因共表达模块。两个 L 数据集之间存在稳健的模块保存(86%),在 S 中保存较少(33%),在 B 中保存更少(23%)。三个跨越肺组织和痰液(非血液)保存的模块与气流受限的严重程度相关。本体论富集分析表明,这些模块包括与线粒体功能、离子稳态、T 细胞和 RNA 处理相关的基因。使用共识 WGCNA 网络方法,这些发现得到了很大程度的重现。
这些观察结果表明,COPD 患者肺组织转录组学中的主要差异在痰液中表现不佳,与血液中确定的差异无关,这表明 COPD 中的系统性成分是独立调节的。最后,与 FEV1 相关的一个保存模块在与线粒体相关的基因中富集,这支持了线粒体功能障碍在 COPD 病理生物学中的作用。