Zhang Tao, Hong Min, Yang Jun, Xu Zhixin, Wang Jiulin, Guo Yongsheng, Liang Chengdu
Shanghai Electrochemical Energy Devices Research Center , School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China . Email:
Department of Micro/Nano Electronics , School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China.
Chem Sci. 2018 Sep 24;9(47):8829-8835. doi: 10.1039/c8sc02897d. eCollection 2018 Dec 21.
Although the lithium-sulfur battery exhibits high capacity and energy density, the cycling performance is severely retarded by dendrite formation and side-reactions of the lithium metal anode and the shuttle effect of polysulfides. Therefore, exploring lithium rich-alloy (or compound) anodes and suppressing the shuttling of polysulfides have become practical technical challenges for the commercialization of lithium-sulfur batteries. Here, a lithium ion sulfur full battery system combining a lithium-rich Li-Si alloy anode and sulfurized polyacrylonitrile (S@pPAN) cathode has been proposed. The free-standing CNF matrix supported Li-Si alloy anode is prepared by a simple and effective method, which is practical for scale-up production. The obtained Li-Si alloy anode demonstrates high cycling stability without dendrite growth, while the use of the S@pPAN cathode avoids the shuttle effect in carbonate electrolytes. The constructed Li-Si/S@pPAN battery could be cycled more than 1000 times at 1C and 3000 times at 3C, with a capacity fading rate of 0.01% and 0.03% per cycle. The exceptional performance should originate from the stable integrated anode structure and the excellent compatibility of the S@pPAN cathode and Li-Si alloy anode with carbonate electrolytes.
尽管锂硫电池具有高容量和高能量密度,但其循环性能因锂金属负极的枝晶形成和副反应以及多硫化物的穿梭效应而严重受阻。因此,探索富锂合金(或化合物)负极并抑制多硫化物的穿梭已成为锂硫电池商业化的实际技术挑战。在此,提出了一种结合富锂Li-Si合金负极和硫化聚丙烯腈(S@pPAN)正极的锂离子硫全电池系统。通过一种简单有效的方法制备了独立的碳纳米纤维(CNF)基体负载的Li-Si合金负极,该方法适用于大规模生产。所制备的Li-Si合金负极表现出高循环稳定性且无枝晶生长,同时使用S@pPAN正极可避免在碳酸盐电解质中的穿梭效应。构建的Li-Si/S@pPAN电池在1C倍率下可循环1000多次,在3C倍率下可循环3000多次,每循环的容量衰减率分别为0.01%和0.03%。这种优异的性能应源于稳定的一体化负极结构以及S@pPAN正极与Li-Si合金负极与碳酸盐电解质之间的优异兼容性。