Suppr超能文献

长链非编码 RNA 调控的 PTEN 酶切开关控制上皮间质转化。

LncRNAs-directed PTEN enzymatic switch governs epithelial-mesenchymal transition.

机构信息

Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.

Department of hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.

出版信息

Cell Res. 2019 Apr;29(4):286-304. doi: 10.1038/s41422-018-0134-3. Epub 2019 Jan 10.

Abstract

Despite the structural conservation of PTEN with dual-specificity phosphatases, there have been no reports regarding the regulatory mechanisms that underlie this potential dual-phosphatase activity. Here, we report that K27-linked polyubiquitination of PTEN at lysines 66 and 80 switches its phosphoinositide/protein tyrosine phosphatase activity to protein serine/threonine phosphatase activity. Mechanistically, high glucose, TGF-β, CTGF, SHH, and IL-6 induce the expression of a long non-coding RNA, GAEA (Glucose Aroused for EMT Activation), which associates with an RNA-binding E3 ligase, MEX3C, and enhances its enzymatic activity, leading to the K27-linked polyubiquitination of PTEN. The MEX3C-catalyzed PTEN activates its protein serine/threonine phosphatase activity and inhibits its phosphatidylinositol/protein tyrosine phosphatase activity. With this altered enzymatic activity, PTEN dephosphorylates the phosphoserine/threonine residues of TWIST1, SNAI1, and YAP1, leading to accumulation of these master regulators of EMT. Animals with genetic inhibition of PTEN, by a single nucleotide mutation generated using CRISPR/Cas9 (Pten), exhibit inhibition of EMT markers during mammary gland morphogenesis in pregnancy/lactation and during cutaneous wound healing processes. Our findings illustrate an unexpected paradigm in which the lncRNA-dependent switch in PTEN protein serine/threonine phosphatase activity is important for physiological homeostasis and disease development.

摘要

尽管 PTEN 与双特异性磷酸酶在结构上具有保守性,但尚未有关于潜在双磷酸酶活性的调节机制的报道。在这里,我们报告称,PTEN 赖氨酸 66 和 80 上的 K27 连接多泛素化将其磷酸肌醇/蛋白酪氨酸磷酸酶活性转换为蛋白丝氨酸/苏氨酸磷酸酶活性。从机制上讲,高葡萄糖、TGF-β、CTGF、SHH 和 IL-6 诱导长非编码 RNA GAEA(EMT 激活的葡萄糖激发)的表达,该 RNA 与 RNA 结合 E3 连接酶 MEX3C 结合并增强其酶活性,导致 PTEN 的 K27 连接多泛素化。MEX3C 催化的 PTEN 激活其蛋白丝氨酸/苏氨酸磷酸酶活性并抑制其磷脂酰肌醇/蛋白酪氨酸磷酸酶活性。通过改变这种酶活性,PTEN 去磷酸化 TWIST1、SNAI1 和 YAP1 的磷酸丝氨酸/苏氨酸残基,导致这些 EMT 主调控因子的积累。使用 CRISPR/Cas9(Pten)生成的单核苷酸突变对 PTEN 进行基因抑制的动物在怀孕/哺乳期和皮肤伤口愈合过程中乳腺形态发生期间表现出 EMT 标志物的抑制。我们的发现说明了一个意想不到的范例,即 lncRNA 依赖性 PTEN 蛋白丝氨酸/苏氨酸磷酸酶活性的转换对于生理稳态和疾病发展很重要。

相似文献

1
LncRNAs-directed PTEN enzymatic switch governs epithelial-mesenchymal transition.
Cell Res. 2019 Apr;29(4):286-304. doi: 10.1038/s41422-018-0134-3. Epub 2019 Jan 10.
2
PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease.
J Clin Invest. 2019 Mar 1;129(3):1129-1151. doi: 10.1172/JCI121987. Epub 2019 Feb 11.
3
Electric field-induced suppression of PTEN drives epithelial-to-mesenchymal transition via mTORC1 activation.
J Dermatol Sci. 2017 Feb;85(2):96-105. doi: 10.1016/j.jdermsci.2016.11.007. Epub 2016 Nov 18.
5
Perspectives on the role of PTEN in diabetic nephropathy: an update.
Crit Rev Clin Lab Sci. 2020 Nov;57(7):470-483. doi: 10.1080/10408363.2020.1746735. Epub 2020 Apr 20.
10
Insights into Biological Role of LncRNAs in Epithelial-Mesenchymal Transition.
Cells. 2019 Sep 30;8(10):1178. doi: 10.3390/cells8101178.

引用本文的文献

3
GPS-SUMO 2.0: an updated online service for the prediction of SUMOylation sites and SUMO-interacting motifs.
Nucleic Acids Res. 2024 Jul 5;52(W1):W238-W247. doi: 10.1093/nar/gkae346.
4
Bibliometric analysis of PTEN in neurodevelopment and neurodegeneration.
Front Aging Neurosci. 2024 Mar 22;16:1390324. doi: 10.3389/fnagi.2024.1390324. eCollection 2024.
5
TC2N inhibits distant metastasis and stemness of breast cancer via blocking fatty acid synthesis.
J Transl Med. 2024 Jan 2;22(1):6. doi: 10.1186/s12967-023-04721-3.
6
GPR162 activates STING dependent DNA damage pathway as a novel tumor suppressor and radiation sensitizer.
Signal Transduct Target Ther. 2023 Feb 1;8(1):48. doi: 10.1038/s41392-022-01224-3.
9
The Role of PTEN in Epithelial-Mesenchymal Transition.
Cancers (Basel). 2022 Aug 3;14(15):3786. doi: 10.3390/cancers14153786.
10
LINC00839 promotes colorectal cancer progression by recruiting RUVBL1/Tip60 complexes to activate NRF1.
EMBO Rep. 2022 Sep 5;23(9):e54128. doi: 10.15252/embr.202154128. Epub 2022 Jul 25.

本文引用的文献

1
Endothelin-1 regulation is entangled in a complex web of epigenetic mechanisms in diabetes.
Physiol Res. 2018 Jun 27;67(Suppl 1):S115-S125. doi: 10.33549/physiolres.933836.
2
metaX: a flexible and comprehensive software for processing metabolomics data.
BMC Bioinformatics. 2017 Mar 21;18(1):183. doi: 10.1186/s12859-017-1579-y.
3
The MaxQuant computational platform for mass spectrometry-based shotgun proteomics.
Nat Protoc. 2016 Dec;11(12):2301-2319. doi: 10.1038/nprot.2016.136. Epub 2016 Oct 27.
4
Epithelial-mesenchymal transition in tissue repair and fibrosis.
Cell Tissue Res. 2016 Sep;365(3):495-506. doi: 10.1007/s00441-016-2464-0. Epub 2016 Jul 27.
5
UBE2B is implicated in myofibrillar protein loss in catabolic C2C12 myotubes.
J Cachexia Sarcopenia Muscle. 2016 Jun;7(3):377-87. doi: 10.1002/jcsm.12060. Epub 2015 Nov 19.
6
AKT1 Inhibits Epithelial-to-Mesenchymal Transition in Breast Cancer through Phosphorylation-Dependent Twist1 Degradation.
Cancer Res. 2016 Mar 15;76(6):1451-62. doi: 10.1158/0008-5472.CAN-15-1941. Epub 2016 Jan 12.
7
Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance.
Nature. 2015 Nov 26;527(7579):472-6. doi: 10.1038/nature15748. Epub 2015 Nov 11.
9
Empirical inference of circuitry and plasticity in a kinase signaling network.
Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7719-24. doi: 10.1073/pnas.1423344112. Epub 2015 Jun 9.
10
The Landscape of long noncoding RNA classification.
Trends Genet. 2015 May;31(5):239-51. doi: 10.1016/j.tig.2015.03.007. Epub 2015 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验