Hogan Kasey, Litz Marc, Shahedipour-Sandvik Fatemeh
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA.
US Army Research Laboratory (ARL), Aldelphi, MD 20783, USA.
Appl Radiat Isot. 2019 Mar;145:154-160. doi: 10.1016/j.apradiso.2018.12.032. Epub 2018 Dec 28.
A combined GaN 3D core-shell and planar pin structure is being developed and demonstrated to achieve the highest potential to increase energy transfer efficiency from the source (η) and power generated per cm (P/cm) in a betavoltaic (BV) device configuration. Physics-based Sentaurus TCAD and Monte Carlo N-Particle extended (MCNPX) software are employed to obtain the maximum η and P/cm by a parametric study of device dimensions coupled with a NiCl source. Idealized structure dimensions are determined to be 2 µm wide, 4 µm tall GaN pin core-shell mesas, with Ni source conformally surrounding the structure with a 2 µm gap for maximum efficiency of energy transfer. For maximizing power deposited (10 µm mesa separation) a 3.75x increase in P/cm at approximately half the activity density compared to a planar device is achieved for 4 µm mesa height, with 5.82x improvement in η.
正在研发并展示一种组合式氮化镓三维核壳与平面pin结构,以在β伏特(BV)器件配置中实现提高源能量传输效率(η)和每平方厘米产生功率(P/cm)的最大潜力。采用基于物理的Sentaurus TCAD和蒙特卡罗N粒子扩展(MCNPX)软件,通过对器件尺寸与NiCl源进行参数研究来获得最大的η和P/cm。确定理想化结构尺寸为宽2μm、高4μm的氮化镓pin核壳台面,Ni源以2μm的间隙共形围绕该结构,以实现能量传输的最大效率。为了使沉积功率最大化(台面间距为10μm),对于4μm的台面高度,与平面器件相比,在大约一半的活度密度下,P/cm提高了3.75倍,η提高了5.82倍。