Suppr超能文献

具有高能量传输效率的基于3D氮化镓的贝塔伏特器件设计。

3D GaN-based betavoltaic device design with high energy transfer efficiency.

作者信息

Hogan Kasey, Litz Marc, Shahedipour-Sandvik Fatemeh

机构信息

Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA.

US Army Research Laboratory (ARL), Aldelphi, MD 20783, USA.

出版信息

Appl Radiat Isot. 2019 Mar;145:154-160. doi: 10.1016/j.apradiso.2018.12.032. Epub 2018 Dec 28.

Abstract

A combined GaN 3D core-shell and planar pin structure is being developed and demonstrated to achieve the highest potential to increase energy transfer efficiency from the source (η) and power generated per cm (P/cm) in a betavoltaic (BV) device configuration. Physics-based Sentaurus TCAD and Monte Carlo N-Particle extended (MCNPX) software are employed to obtain the maximum η and P/cm by a parametric study of device dimensions coupled with a NiCl source. Idealized structure dimensions are determined to be 2 µm wide, 4 µm tall GaN pin core-shell mesas, with Ni source conformally surrounding the structure with a 2 µm gap for maximum efficiency of energy transfer. For maximizing power deposited (10 µm mesa separation) a 3.75x increase in P/cm at approximately half the activity density compared to a planar device is achieved for 4 µm mesa height, with 5.82x improvement in η.

摘要

正在研发并展示一种组合式氮化镓三维核壳与平面pin结构,以在β伏特(BV)器件配置中实现提高源能量传输效率(η)和每平方厘米产生功率(P/cm)的最大潜力。采用基于物理的Sentaurus TCAD和蒙特卡罗N粒子扩展(MCNPX)软件,通过对器件尺寸与NiCl源进行参数研究来获得最大的η和P/cm。确定理想化结构尺寸为宽2μm、高4μm的氮化镓pin核壳台面,Ni源以2μm的间隙共形围绕该结构,以实现能量传输的最大效率。为了使沉积功率最大化(台面间距为10μm),对于4μm的台面高度,与平面器件相比,在大约一半的活度密度下,P/cm提高了3.75倍,η提高了5.82倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验