Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, India.
Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, India.
J Colloid Interface Sci. 2019 Mar 22;540:247-257. doi: 10.1016/j.jcis.2019.01.006. Epub 2019 Jan 4.
Fabrication of polymeric nanocomposites with suitable nanomaterial via an in-situ polymerization approach results in multifunctional advanced materials.
The present work demonstrates the fabrication of interpenetrating polymer network (IPN)-based smart nanocomposites of polyurethane and polystyrene (PS) with different weight percentages of multi-walled carbon nanotubes (MWCNT). The MWCNT was grafted with pre-polymer of PS. The grafted-MWCNT and the nanocomposites were analyzed by Fourier transform infrared and Raman spectroscopic, X-ray diffraction, transmission electron microscopic studies. Further, different properties of the nanocomposites were evaluated.
The fabricated nanocomposites showed excellent enhancement in mechanical (tensile strength: 175.9%; elongation at break: 161.9%; and toughness: 279.8%) and thermal (initial degradation temperature: 107.8%) properties compared to the pristine IPN. The improved properties are because of strong interfacial matrix-nanomaterial interactions. In addition, the nanocomposites demonstrated high water repellence (static contact angle varied from 127.9° to 143.6°), outstanding self-cleaning and anti-icing (freezing delay time of 1850-2700 s) behaviors. Most interestingly, the fabricated nanocomposites exhibited excellent self-healing ability under the exposure of microwave (within 46-22 s at 300 W power input) and sunlight (within 318-257 s, light intensity: 0.9-1.1 × 10 lux). Therefore, the studied nanocomposites hold significant potential to be used in the domains of advanced smart materials.
通过原位聚合方法用合适的纳米材料制备聚合物纳米复合材料可得到多功能先进材料。
本工作演示了具有不同多壁碳纳米管(MWCNT)重量百分比的聚氨酯和聚苯乙烯(PS)互穿聚合物网络(IPN)基智能纳米复合材料的制备。MWCNT 与 PS 的预聚物接枝。接枝 MWCNT 和纳米复合材料通过傅里叶变换红外和拉曼光谱、X 射线衍射、透射电子显微镜研究进行分析。此外,评估了纳米复合材料的不同性能。
与原始 IPN 相比,制备的纳米复合材料在机械性能(拉伸强度:175.9%;断裂伸长率:161.9%;韧性:279.8%)和热性能(起始降解温度:107.8°C)方面表现出优异的增强。改进的性能是因为基质-纳米材料之间的强界面相互作用。此外,纳米复合材料表现出高拒水性(静态接触角从 127.9°变化到 143.6°)、出色的自清洁和抗结冰性能(冻结延迟时间为 1850-2700 s)。最有趣的是,在暴露于微波(在 300 W 功率输入下为 46-22 s)和阳光(在 0.9-1.1×10 lux 的光强度下为 318-257 s)下,制备的纳米复合材料表现出优异的自修复能力。因此,研究的纳米复合材料在先进智能材料领域具有重要的应用潜力。