Suppr超能文献

葡聚糖包覆的氧化铁纳米颗粒作为仿生催化剂用于局部和 pH 激活的生物膜破坏。

Dextran-Coated Iron Oxide Nanoparticles as Biomimetic Catalysts for Localized and pH-Activated Biofilm Disruption.

机构信息

Department of Radiology , University of Pennsylvania , 3400 Spruce Street , 1 Silverstein, Philadelphia , Pennsylvania 19104 , United States.

Biofilm Research Laboratories, Levy Center for Oral Health , School of Dental Medicine, University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States.

出版信息

ACS Nano. 2019 May 28;13(5):4960-4971. doi: 10.1021/acsnano.8b08702. Epub 2019 Jan 22.

Abstract

Biofilms are surface-attached bacterial communities embedded within an extracellular matrix that create localized and protected microenvironments. Acidogenic oral biofilms can demineralize the enamel-apatite on teeth, causing dental caries (tooth decay). Current antimicrobials have low efficacy and do not target the protective matrix and acidic pH within the biofilm. Recently, catalytic nanoparticles were shown to disrupt biofilms but lacked a stabilizing coating required for clinical applications. Here, we report dextran-coated iron oxide nanoparticles termed nanozymes (Dex-NZM) that display strong catalytic (peroxidase-like) activity at acidic pH values, target biofilms with high specificity, and prevent severe caries without impacting surrounding oral tissues in vivo. Nanoparticle formulations were synthesized with dextran coatings (molecular weights from 1.5 to 40 kDa were used), and their catalytic performance and bioactivity were assessed. We found that 10 kDa dextran coating provided maximal catalytic activity, biofilm uptake, and antibiofilm properties. Mechanistic studies indicated that iron oxide cores are the source of catalytic activity, whereas dextran on the nanoparticle surface provided stability without blocking catalysis. Dextran-coating facilitated NZM incorporation into exopolysaccharides (EPS) structure and binding within biofilms, which activated hydrogen peroxide (HO) for localized bacterial killing and EPS-matrix breakdown. Surprisingly, dextran coating enhanced selectivity toward biofilms while avoiding binding to gingival cells. Furthermore, Dex-NZM/HO treatment significantly reduced the onset and severity of caries lesions (vs control or either Dex-NZM or HO alone) without adverse effects on gingival tissues or oral microbiota diversity in vivo. Therefore, dextran-coated nanozymes have potential as an alternative treatment to control tooth decay and possibly other biofilm-associated diseases.

摘要

生物膜是附着在表面的细菌群落,嵌入在细胞外基质中,形成局部和受保护的微环境。产酸口腔生物膜可使牙齿的釉质磷灰石脱矿,导致龋齿(蛀牙)。目前的抗菌药物疗效低,且不能针对生物膜内的保护性基质和酸性 pH 值。最近,催化纳米颗粒被证明可以破坏生物膜,但缺乏临床应用所需的稳定涂层。在这里,我们报告了一种被称为纳米酶(Dex-NZM)的葡聚糖涂层氧化铁纳米颗粒,它在酸性 pH 值下表现出很强的催化(过氧化物酶样)活性,对生物膜具有高度特异性,可预防严重的龋齿,而不会对体内周围的口腔组织产生影响。合成了具有葡聚糖涂层(使用分子量为 1.5 至 40 kDa 的葡聚糖)的纳米颗粒制剂,并评估了它们的催化性能和生物活性。我们发现,10 kDa 的葡聚糖涂层提供了最大的催化活性、生物膜摄取和抗生物膜特性。机制研究表明,氧化铁核是催化活性的来源,而纳米颗粒表面的葡聚糖提供了稳定性而不阻止催化。葡聚糖涂层促进了 NZM 掺入到胞外多糖(EPS)结构中,并与生物膜结合,从而激活过氧化氢(HO)用于局部细菌杀伤和 EPS 基质分解。令人惊讶的是,葡聚糖涂层增强了对生物膜的选择性,同时避免与牙龈细胞结合。此外,Dex-NZM/HO 处理显著减少了龋齿病变的发生和严重程度(与对照组或 Dex-NZM 或 HO 单独治疗相比),而对牙龈组织或口腔微生物多样性没有不良影响。因此,葡聚糖涂层的纳米酶具有作为控制龋齿和可能其他生物膜相关疾病的替代治疗方法的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/7059368/4ed1c325b835/nihms-1054489-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验