Suppr超能文献

硫酸盐诱导的气孔关闭需要经典的脱落酸信号转导机制。

Sulfate-Induced Stomata Closure Requires the Canonical ABA Signal Transduction Machinery.

作者信息

Rajab Hala, Khan Muhammad Sayyar, Malagoli Mario, Hell Rüdiger, Wirtz Markus

机构信息

Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.

Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, 25000 Peshawar, Pakistan.

出版信息

Plants (Basel). 2019 Jan 16;8(1):21. doi: 10.3390/plants8010021.

Abstract

Phytohormone abscisic acid (ABA) is the canonical trigger for stomatal closure upon abiotic stresses like drought. Soil-drying is known to facilitate root-to-shoot transport of sulfate. Remarkably, sulfate and sulfide-a downstream product of sulfate assimilation-have been independently shown to promote stomatal closure. For induction of stomatal closure, sulfate must be incorporated into cysteine, which triggers ABA biosynthesis by transcriptional activation of NCED3. Here, we apply reverse genetics to unravel if the canonical ABA signal transduction machinery is required for sulfate-induced stomata closure, and if cysteine biosynthesis is also mandatory for the induction of stomatal closure by the gasotransmitter sulfide. We provide genetic evidence for the importance of reactive oxygen species (ROS) production by the plasma membrane-localized NADPH oxidases, RBOHD, and RBOHF, during the sulfate-induced stomatal closure. In agreement with the established role of ROS as the second messenger of ABA-signaling, the SnRK2-type kinase OST1 and the protein phosphatase ABI1 are essential for sulfate-induced stomata closure. Finally, we show that sulfide fails to close stomata in a cysteine-biosynthesis depleted mutant. Our data support the hypothesis that the two mobile signals, sulfate and sulfide, induce stomatal closure by stimulating cysteine synthesis to trigger ABA production.

摘要

植物激素脱落酸(ABA)是干旱等非生物胁迫下气孔关闭的典型触发因素。已知土壤干燥会促进硫酸盐从根部向地上部的运输。值得注意的是,硫酸盐以及硫酸盐同化的下游产物硫化物已被独立证明可促进气孔关闭。为了诱导气孔关闭,硫酸盐必须掺入半胱氨酸中,半胱氨酸通过转录激活NCED3来触发ABA生物合成。在此,我们运用反向遗传学来揭示硫酸盐诱导的气孔关闭是否需要经典的ABA信号转导机制,以及气体信号分子硫化物诱导气孔关闭时半胱氨酸生物合成是否也是必需的。我们提供了遗传学证据,证明质膜定位的NADPH氧化酶RBOHD和RBOHF在硫酸盐诱导的气孔关闭过程中产生活性氧(ROS)的重要性。与ROS作为ABA信号转导第二信使的既定作用一致,SnRK2型激酶OST1和蛋白磷酸酶ABI1对硫酸盐诱导的气孔关闭至关重要。最后,我们表明硫化物在半胱氨酸生物合成缺陷型突变体中无法关闭气孔。我们的数据支持这样的假设,即两种可移动信号——硫酸盐和硫化物,通过刺激半胱氨酸合成以触发ABA产生来诱导气孔关闭。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1720/6359059/8cf43b791228/plants-08-00021-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验