Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany.
Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098, Kiel, Germany.
Theor Appl Genet. 2019 Apr;132(4):1211-1222. doi: 10.1007/s00122-018-03273-1. Epub 2019 Jan 17.
Covering a subset of individuals with a quantitative predictor, while imputing records for all others using pedigree or genomic data, could improve the precision of predictions while controlling for costs. Predicting genetic values with high accuracy is pivotal for effective candidate selection in animal and plant breeding. Novel 'omics'-based predictors have been shown to improve upon established genome-based predictions of important complex traits but require laborious and expensive assays. As a consequence, there are various datasets with full genetic marker coverage of all studied individuals but incomplete coverage with other 'omics' data. In animal breeding, single-step prediction was introduced to efficiently combine pedigree information, collected on a large number of animals, with genomic information, collected on a smaller subset of animals, for breeding value estimation without bias. Using two maize datasets of inbred lines and hybrids, we show that the single-step framework facilitates imputing transcriptomic data, boosting forecasts when their predictive ability exceeds that of pedigree or genomic data. Our results suggest that covering only a subset of inbred lines with 'omics' predictors and imputing all others using pedigree or genomic data could enable breeders to improve trait predictions while keeping costs under control. Employing 'omics' predictors could particularly improve candidate selection in hybrid breeding because the success of forecasts is a strongly convex function of predictive ability.
覆盖具有定量预测因子的个体子集,同时使用系谱或基因组数据对所有其他记录进行插补,可以在控制成本的同时提高预测的准确性。准确预测遗传值对于动植物育种中的有效候选选择至关重要。基于新型“组学”的预测因子已被证明可以提高基于基因组的重要复杂性状预测的准确性,但需要进行繁琐且昂贵的检测。因此,存在各种数据集,其中所有研究个体都具有完整的遗传标记覆盖范围,但其他“组学”数据的覆盖范围不完整。在动物育种中,单步预测被引入,以有效地将系谱信息(在大量动物上收集)与基因组信息(在较小的动物子集上收集)结合起来,用于估计育种值,而不会产生偏差。我们使用两个玉米自交系和杂交种的数据集,表明单步框架有助于插补转录组数据,当它们的预测能力超过系谱或基因组数据时,可以提高预测。我们的研究结果表明,仅用“组学”预测因子覆盖一小部分自交系,并使用系谱或基因组数据对所有其他自交系进行插补,可以使育种者在控制成本的同时提高性状预测的准确性。使用“组学”预测因子可以特别改善杂种育种中的候选选择,因为预测的成功是预测能力的强凸函数。