Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas.
J Strength Cond Res. 2019 Mar;33(3):717-726. doi: 10.1519/JSC.0000000000003031.
Palmer, TB, Pineda, JG, Cruz, MR, and Agu-Udemba, CC. Duration-dependent effects of passive static stretching on musculotendinous stiffness and maximal and rapid torque and surface electromyography characteristics of the hamstrings. J Strength Cond Res 33(3): 717-726, 2019-This study aimed to examine the effects of stretching duration on passive musculotendinous stiffness and maximal and rapid torque and surface electromyography (EMG) characteristics of the hamstrings. Thirteen young females (age = 21 ± 2 years) underwent 2 passive straight-leg raise (SLR) assessments and 2 isometric maximal voluntary contractions (MVCs) of the hamstrings before and after 4 randomized conditions that included a control treatment and 3 experimental treatments of passive static stretching for 30-, 60-, and 120-second durations. Passive stiffness was calculated during each SLR as the slope of the final 10% of the angle-torque curve. Isometric peak torque (PT), rate of torque development (RTD), peak EMG amplitude (PEMG), and rate of EMG rise (RER) were extracted from each MVC. Results indicated that PT and PEMG were not affected (p = 0.993 and 0.422, respectively) by any of the experimental treatments. Rate of torque development and RER decreased from pre- to post-treatment for 120 seconds (p = 0.001 and 0.001) but not for the control (p = 0.616 and 0.466), 30- (p = 0.628 and 0.612), and 60-second (p = 0.396 and 0.815) interventions. The slope coefficient decreased from pre- to post-treatment for the 30- (p = 0.001), 60- (p = 0.002), and 120-second (p = 0.001) stretching interventions but not for the control (p = 0.649). Given the significant stiffness reductions and lack of changes in PT and RTD for the 30- and 60-second interventions, it may be advantageous for practitioners who are using hamstring passive stretching as part of a warm-up routine, to perform such stretching on their clients for short (30-60 seconds) rather than moderate (120-second) stretching durations.
帕尔默、TB、皮内达、JG、克鲁兹、MR 和阿古-乌德姆巴、CC。被动静态伸展对腘绳肌的肌肌腱硬度以及最大和快速扭矩和表面肌电图特征的时程依赖性影响。J 力量与调理研究 33(3):717-726,2019-本研究旨在探讨伸展时间对被动直腿抬高(SLR)评估中腘绳肌的肌肌腱硬度、最大和快速扭矩以及表面肌电图(EMG)特征的影响。13 名年轻女性(年龄=21±2 岁)在 4 种随机条件下进行了 2 次被动直腿抬高(SLR)评估和 2 次等长最大自愿收缩(HCV)的腘绳肌,这 4 种随机条件包括对照处理和 3 种被动静态伸展的实验处理,持续时间为 30 秒、60 秒和 120 秒。在每次 SLR 中,被动硬度通过角度-扭矩曲线的最后 10%的斜率来计算。等速峰值扭矩(PT)、扭矩发展速率(RTD)、峰值肌电图幅度(PEMG)和肌电图上升速率(RER)从每次 MVC 中提取。结果表明,PT 和 PEMG 不受任何实验处理的影响(p=0.993 和 0.422)。RTD 和 RER 在 120 秒时从治疗前到治疗后下降(p=0.001 和 0.001),但在对照组中没有下降(p=0.616 和 0.466),30- (p=0.628 和 0.612)和 60 秒(p=0.396 和 0.815)。斜率系数在 30- (p=0.001)、60- (p=0.002)和 120 秒(p=0.001)的伸展干预后从治疗前到治疗后下降,但在对照组中没有下降(p=0.649)。考虑到 30 秒和 60 秒干预的显著硬度降低和 PT 和 RTD 没有变化,对于将被动腘绳肌伸展作为热身常规的一部分的从业者来说,将这种伸展应用于客户的短时间(30-60 秒)而非中等时间(120 秒)伸展可能是有益的。