Suppr超能文献

基于可见光相机传感器的融合空间和时间信息的人脸识别演示攻击检测。

Visible-Light Camera Sensor-Based Presentation Attack Detection for Face Recognition by Combining Spatial and Temporal Information.

机构信息

Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 100-715, Korea.

出版信息

Sensors (Basel). 2019 Jan 20;19(2):410. doi: 10.3390/s19020410.

Abstract

Face-based biometric recognition systems that can recognize human faces are widely employed in places such as airports, immigration offices, and companies, and applications such as mobile phones. However, the security of this recognition method can be compromised by attackers (unauthorized persons), who might bypass the recognition system using artificial facial images. In addition, most previous studies on face presentation attack detection have only utilized spatial information. To address this problem, we propose a visible-light camera sensor-based presentation attack detection that is based on both spatial and temporal information, using the deep features extracted by a stacked convolutional neural network (CNN)-recurrent neural network (RNN) along with handcrafted features. Through experiments using two public datasets, we demonstrate that the temporal information is sufficient for detecting attacks using face images. In addition, it is established that the handcrafted image features efficiently enhance the detection performance of deep features, and the proposed method outperforms previous methods.

摘要

基于面部的生物识别系统可以识别人脸,被广泛应用于机场、移民局和公司等场所,以及手机等应用中。然而,这种识别方法的安全性可能会受到攻击者(未经授权的人)的攻击,他们可能会使用人工面部图像绕过识别系统。此外,之前大多数关于人脸呈现攻击检测的研究仅利用了空间信息。为了解决这个问题,我们提出了一种基于可见光相机传感器的呈现攻击检测方法,该方法基于空间和时间信息,使用堆叠卷积神经网络(CNN)-循环神经网络(RNN)提取的深度特征以及手工制作的特征。通过使用两个公共数据集进行实验,我们证明了使用人脸图像进行攻击检测时,时间信息是足够的。此外,还确定了手工制作的图像特征可以有效地提高深度特征的检测性能,并且所提出的方法优于以前的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f854/6359417/430872e5ca5d/sensors-19-00410-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验