Suppr超能文献

预测最年长老年人痴呆症和神经病理学的模型:万塔 85+队列研究。

Prediction models for dementia and neuropathology in the oldest old: the Vantaa 85+ cohort study.

机构信息

Institute of Clinical Medicine, Neurology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.

Institute for Neuroscience, Newcastle University, Newcastle upon Tyne, UK.

出版信息

Alzheimers Res Ther. 2019 Jan 22;11(1):11. doi: 10.1186/s13195-018-0450-3.

Abstract

BACKGROUND

We developed multifactorial models for predicting incident dementia and brain pathology in the oldest old using the Vantaa 85+ cohort.

METHODS

We included participants without dementia at baseline and at least 2 years of follow-up (N = 245) for dementia prediction or with autopsy data (N = 163) for pathology. A supervised machine learning method was used for model development, considering sociodemographic, cognitive, clinical, vascular, and lifestyle factors, as well as APOE genotype. Neuropathological assessments included β-amyloid, neurofibrillary tangles and neuritic plaques, cerebral amyloid angiopathy (CAA), macro- and microscopic infarcts, α-synuclein pathology, hippocampal sclerosis, and TDP-43.

RESULTS

Prediction model performance was evaluated using AUC for 10 × 10-fold cross-validation. Overall AUCs were 0.73 for dementia, 0.64-0.68 for Alzheimer's disease (AD)- or amyloid-related pathologies, 0.72 for macroinfarcts, and 0.61 for microinfarcts. Predictors for dementia were different from those in previous reports of younger populations; for example, age, sex, and vascular and lifestyle factors were not predictive. Predictors for dementia versus pathology were also different, because cognition and education predicted dementia but not AD- or amyloid-related pathologies. APOE genotype was most consistently present across all models. APOE alleles had a different impact: ε4 did not predict dementia, but it did predict all AD- or amyloid-related pathologies; ε2 predicted dementia, but it was protective against amyloid and neuropathological AD; and ε3ε3 was protective against dementia, neurofibrillary tangles, and CAA. Very few other factors were predictive of pathology.

CONCLUSIONS

Differences between predictors for dementia in younger old versus oldest old populations, as well as for dementia versus pathology, should be considered more carefully in future studies.

摘要

背景

我们使用万塔 85+队列,为预测高龄老人的痴呆症和脑部病变,开发了用于预测痴呆症的多因素模型。

方法

我们纳入了无基线和至少 2 年随访时痴呆症(N=245)或尸检数据(N=163)的参与者进行病理学预测。采用有监督机器学习方法进行模型开发,考虑了社会人口统计学、认知、临床、血管和生活方式因素,以及 APOE 基因型。神经病理学评估包括β-淀粉样蛋白、神经原纤维缠结和神经原纤维斑、脑淀粉样血管病(CAA)、大梗死和微梗死、α-突触核蛋白病、海马硬化和 TDP-43。

结果

使用 10×10 折交叉验证评估预测模型的性能。总体 AUC 为痴呆症 0.73、阿尔茨海默病(AD)或淀粉样相关病变 0.64-0.68、大梗死 0.72、微梗死 0.61。痴呆症的预测因子与之前报道的年轻人群不同;例如,年龄、性别、血管和生活方式因素没有预测作用。痴呆症与病理学的预测因子也不同,因为认知和教育预测痴呆症,但不预测 AD 或淀粉样相关病变。APOE 基因型在所有模型中最常见。APOE 等位基因的影响不同:ε4 不预测痴呆症,但预测所有 AD 或淀粉样相关病变;ε2 预测痴呆症,但对淀粉样和神经病理学 AD 有保护作用;ε3ε3 对痴呆症、神经原纤维缠结和 CAA 有保护作用。很少有其他因素可预测病理学。

结论

在未来的研究中,应更仔细地考虑年轻老年人和高龄老年人的痴呆症预测因子之间的差异,以及痴呆症与病理学之间的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c5/6343349/2957d983d0c3/13195_2018_450_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验