Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905.
Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom.
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2091-2096. doi: 10.1073/pnas.1819592116. Epub 2019 Jan 23.
The aggregation of monomeric amyloid β protein (Aβ) peptide into oligomers and amyloid fibrils in the mammalian brain is associated with Alzheimer's disease. Insight into the thermodynamic stability of the Aβ peptide in different polymeric states is fundamental to defining and predicting the aggregation process. Experimental determination of Aβ thermodynamic behavior is challenging due to the transient nature of Aβ oligomers and the low peptide solubility. Furthermore, quantitative calculation of a thermodynamic phase diagram for a specific peptide requires extremely long computational times. Here, using a coarse-grained protein model, molecular dynamics (MD) simulations are performed to determine an equilibrium concentration and temperature phase diagram for the amyloidogenic peptide fragment Aβ Our results reveal that the only thermodynamically stable phases are the solution phase and the macroscopic fibrillar phase, and that there also exists a hierarchy of metastable phases. The boundary line between the solution phase and fibril phase is found by calculating the temperature-dependent solubility of a macroscopic Aβ fibril consisting of an infinite number of β-sheet layers. This in silico determination of an equilibrium (solubility) phase diagram for a real amyloid-forming peptide, Aβ, over the temperature range of 277-330 K agrees well with fibrillation experiments and transmission electron microscopy (TEM) measurements of the fibril morphologies formed. This in silico approach of predicting peptide solubility is also potentially useful for optimizing biopharmaceutical production and manufacturing nanofiber scaffolds for tissue engineering.
单体淀粉样β蛋白 (Aβ) 肽在哺乳动物大脑中聚集为寡聚体和淀粉样纤维与阿尔茨海默病有关。了解 Aβ 肽在不同聚合态下的热力学稳定性对于定义和预测聚集过程至关重要。由于 Aβ 寡聚体的瞬态性质和低肽溶解度,实验测定 Aβ 热力学行为具有挑战性。此外,为特定肽定量计算热力学相图需要极长的计算时间。在这里,使用粗粒度蛋白质模型,进行分子动力学 (MD) 模拟以确定淀粉样肽片段 Aβ 的平衡浓度和温度相图。我们的结果表明,唯一热力学稳定的相是溶液相和宏观纤维状相,并且还存在亚稳相的层次结构。通过计算由无限数量的β-折叠层组成的宏观 Aβ 纤维的温度依赖性溶解度,找到溶液相和纤维相之间的分界线。该方法可用于预测实际形成淀粉样的肽,Aβ 在 277-330 K 温度范围内的平衡(溶解度)相图,与纤维形成实验和用于组织工程的纤维形态的透射电子显微镜 (TEM) 测量结果非常吻合。这种预测肽溶解度的计算方法也可能对优化生物制药生产和制造用于组织工程的纳米纤维支架有用。