School of Mathematical Sciences, Zhejiang University, HangZhou, Zhejiang, China.
Comput Intell Neurosci. 2018 Dec 23;2018:6401645. doi: 10.1155/2018/6401645. eCollection 2018.
The neural autoregressive distribution estimator(NADE) is a competitive model for the task of density estimation in the field of machine learning. While NADE mainly focuses on the problem of estimating density, the ability for dealing with other tasks remains to be improved. In this paper, we introduce a simple and efficient reweighted scheme to modify the parameters of the learned NADE. We make use of the structure of NADE, and the weights are derived from the activations in the corresponding hidden layers. The experiments show that the features from unsupervised learning with our reweighted scheme would be more meaningful, and the performance of the initialization for neural networks has a significant improvement as well.
神经自回归分布估计器(NADE)是机器学习领域中用于密度估计任务的一种具有竞争力的模型。虽然 NADE 主要侧重于估计密度的问题,但处理其他任务的能力仍有待提高。在本文中,我们引入了一种简单而有效的加权方案来修改学习到的 NADE 的参数。我们利用 NADE 的结构,权重是从相应的隐藏层中的激活中推导出来的。实验表明,使用我们的加权方案进行无监督学习所得到的特征将更加有意义,并且神经网络的初始化性能也有了显著的提高。