Suppr超能文献

双拉普拉斯正则化矩阵补全在 miRNA-疾病关联预测中的应用。

Dual Laplacian regularized matrix completion for microRNA-disease associations prediction.

机构信息

a School of Computer Science , China University of Geosciences , Wuhan , China.

b Department of Hematology , The Affiliated Huai'an Hospital of Xuzhou Medical University , Huai'an , China.

出版信息

RNA Biol. 2019 May;16(5):601-611. doi: 10.1080/15476286.2019.1570811. Epub 2019 Feb 20.

Abstract

Since lots of miRNA-disease associations have been verified, it is meaningful to discover more miRNA-disease associations for serving disease diagnosis and prevention of human complex diseases. However, it is not practical to identify potential associations using traditional biological experimental methods since the process is expensive and time consuming. Therefore, it is necessary to develop efficient computational methods to accomplish this task. In this work, we introduced a matrix completion model with dual Laplacian regularization (DLRMC) to infer unknown miRNA-disease associations in heterogeneous omics data. Specifically, DLRMC transformed the task of miRNA-disease association prediction into a matrix completion problem, in which the potential missing entries of the miRNA-disease association matrix were calculated, the missing association can be obtained based on the prediction scores after the completion procedure. Meanwhile, the miRNA functional similarity and the disease semantic similarity were fully exploited to serve the miRNA-disease association matrix completion by using a dual Laplacian regularization term. In the experiments, we conducted global and local Leave-One-Out Cross Validation (LOOCV) and case studies to evaluate the efficacy of DLRMC on the Human miRNA-disease associations dataset obtained from the HMDDv2.0 database. As a result, the AUCs of DLRMC is 0.9174 and 0.8289 in global LOOCV and local LOOCV, respectively, which significantly outperform a variety of previous methods. In addition, in the case studies on four significant diseases related to human health including Colon Neoplasms, Kidney neoplasms, Lymphoma and Prostate neoplasms, 90%, 92%, 92% and 94% out of the top 50 predicted miRNAs has been confirmed, respectively.

摘要

由于已经验证了许多 miRNA 与疾病的关联,因此发现更多的 miRNA 与疾病的关联对于服务于人类复杂疾病的诊断和预防是有意义的。然而,使用传统的生物实验方法来识别潜在的关联是不切实际的,因为这个过程既昂贵又耗时。因此,有必要开发有效的计算方法来完成这项任务。在这项工作中,我们引入了一种具有双拉普拉斯正则化(DLRMC)的矩阵补全模型,用于推断异构组学数据中未知的 miRNA 与疾病的关联。具体来说,DLRMC 将 miRNA 与疾病关联预测的任务转化为一个矩阵补全问题,其中计算了 miRNA 与疾病关联矩阵的潜在缺失项,在补全过程之后,可以根据预测得分获得缺失的关联。同时,充分利用 miRNA 功能相似性和疾病语义相似性,通过双拉普拉斯正则化项为 miRNA 与疾病关联矩阵补全服务。在实验中,我们进行了全局和局部留一交叉验证(LOOCV)以及案例研究,以评估 DLRMC 在从 HMDDv2.0 数据库获得的人类 miRNA 与疾病关联数据集上的效果。结果表明,DLRMC 在全局 LOOCV 和局部 LOOCV 中的 AUC 分别为 0.9174 和 0.8289,明显优于多种先前的方法。此外,在与人类健康相关的四种重要疾病(包括结肠肿瘤、肾肿瘤、淋巴瘤和前列腺肿瘤)的案例研究中,分别有 90%、92%、92%和 94%的前 50 个预测 miRNA 得到了验证。

相似文献

1
Dual Laplacian regularized matrix completion for microRNA-disease associations prediction.
RNA Biol. 2019 May;16(5):601-611. doi: 10.1080/15476286.2019.1570811. Epub 2019 Feb 20.
2
MCMDA: Matrix completion for MiRNA-disease association prediction.
Oncotarget. 2017 Mar 28;8(13):21187-21199. doi: 10.18632/oncotarget.15061.
3
GIMDA: Graphlet interaction-based MiRNA-disease association prediction.
J Cell Mol Med. 2018 Mar;22(3):1548-1561. doi: 10.1111/jcmm.13429. Epub 2017 Dec 22.
4
MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.
PLoS Comput Biol. 2018 Aug 24;14(8):e1006418. doi: 10.1371/journal.pcbi.1006418. eCollection 2018 Aug.
5
MvKFN-MDA: Multi-view Kernel Fusion Network for miRNA-disease association prediction.
Artif Intell Med. 2021 Aug;118:102115. doi: 10.1016/j.artmed.2021.102115. Epub 2021 Jun 4.
6
LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction.
PLoS Comput Biol. 2017 Dec 18;13(12):e1005912. doi: 10.1371/journal.pcbi.1005912. eCollection 2017 Dec.
7
An improved random forest-based computational model for predicting novel miRNA-disease associations.
BMC Bioinformatics. 2019 Dec 3;20(1):624. doi: 10.1186/s12859-019-3290-7.
9
EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction.
Cell Death Dis. 2018 Jan 5;9(1):3. doi: 10.1038/s41419-017-0003-x.
10
ELLPMDA: Ensemble learning and link prediction for miRNA-disease association prediction.
RNA Biol. 2018;15(6):807-818. doi: 10.1080/15476286.2018.1460016. Epub 2018 May 25.

引用本文的文献

1
RMDGCN: Prediction of RNA methylation and disease associations based on graph convolutional network with attention mechanism.
PLoS Comput Biol. 2023 Dec 6;19(12):e1011677. doi: 10.1371/journal.pcbi.1011677. eCollection 2023 Dec.
3
4
5
GBDTL2E: Predicting lncRNA-EF Associations Using Diffusion and HeteSim Features Based on a Heterogeneous Network.
Front Genet. 2020 Apr 15;11:272. doi: 10.3389/fgene.2020.00272. eCollection 2020.
6
PESM: predicting the essentiality of miRNAs based on gradient boosting machines and sequences.
BMC Bioinformatics. 2020 Mar 18;21(1):111. doi: 10.1186/s12859-020-3426-9.
7
Inferring Disease-Associated MicroRNAs Using Semi-supervised Multi-Label Graph Convolutional Networks.
iScience. 2019 Oct 25;20:265-277. doi: 10.1016/j.isci.2019.09.013. Epub 2019 Sep 16.

本文引用的文献

1
Novel Human miRNA-Disease Association Inference Based on Random Forest.
Mol Ther Nucleic Acids. 2018 Dec 7;13:568-579. doi: 10.1016/j.omtn.2018.10.005. Epub 2018 Oct 11.
2
Predicting microRNA-disease associations using bipartite local models and hubness-aware regression.
RNA Biol. 2018;15(9):1192-1205. doi: 10.1080/15476286.2018.1517010. Epub 2018 Sep 19.
4
MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.
PLoS Comput Biol. 2018 Aug 24;14(8):e1006418. doi: 10.1371/journal.pcbi.1006418. eCollection 2018 Aug.
5
TLHNMDA: Triple Layer Heterogeneous Network Based Inference for MiRNA-Disease Association Prediction.
Front Genet. 2018 Jul 3;9:234. doi: 10.3389/fgene.2018.00234. eCollection 2018.
6
Predicting miRNA-disease association based on inductive matrix completion.
Bioinformatics. 2018 Dec 15;34(24):4256-4265. doi: 10.1093/bioinformatics/bty503.
7
BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction.
Bioinformatics. 2018 Sep 15;34(18):3178-3186. doi: 10.1093/bioinformatics/bty333.
8
ELLPMDA: Ensemble learning and link prediction for miRNA-disease association prediction.
RNA Biol. 2018;15(6):807-818. doi: 10.1080/15476286.2018.1460016. Epub 2018 May 25.
9
EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction.
Cell Death Dis. 2018 Jan 5;9(1):3. doi: 10.1038/s41419-017-0003-x.
10
Gene selection for microarray data classification via subspace learning and manifold regularization.
Med Biol Eng Comput. 2018 Jul;56(7):1271-1284. doi: 10.1007/s11517-017-1751-6. Epub 2017 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验