Suppr超能文献

实时 FO-SPR 监测固相 DNA 酶切割活性,用于尖端生物传感。

Real-Time FO-SPR Monitoring of Solid-Phase DNAzyme Cleavage Activity for Cutting-Edge Biosensing.

机构信息

Department of Biosystems, Biosensors Group , KU Leuven , Willem de Croylaan 42 , B-3001 Leuven , Belgium.

Department of Materials Engineering , KU Leuven , Kasteelpark Arenberg 44 , B-3001 Leuven , Belgium.

出版信息

ACS Appl Mater Interfaces. 2019 Feb 20;11(7):6759-6768. doi: 10.1021/acsami.8b18756. Epub 2019 Feb 7.

Abstract

DNA nanotechnology has a great potential in biosensor design including nanostructuring of the biosensor surface through DNA origami, target recognition by means of aptamers, and DNA-based signal amplification strategies. In this paper, we use DNA nanotechnology to describe for the first time the concept of real-time solid-phase monitoring of DNAzyme cleavage activity for the detection of specific single-stranded DNA (ssDNA) with a fiber optic surface plasmon resonance (FO-SPR) biosensor. Hereto, we first developed a robust ligation strategy for the functionalization of the FO-SPR biosensing surface with ssDNA-tethered gold nanoparticles, serving as the substrate for the DNAzyme. Next, we established a relation between the SPR signal change, due to the cleavage activity of the 10-23 DNAzyme, and the concentration of the DNAzyme, showing faster cleavage kinetics for higher DNAzyme concentrations. Finally, we implemented this generic concept for biosensing of ssDNA target in solution. Hereto, we designed a DNAzyme-inhibitor complex, consisting of an internal loop structure complementary to the ssDNA target, that releases active DNAzyme molecules in a controlled way as a function of the target concentration. We demonstrated reproducible target detection with a theoretical limit of detection of 1.4 nM, proving that the presented ligation strategy is key to a universal DNAzyme-based FO-SPR biosensing concept with promising applications in the medical and agrofood sector.

摘要

DNA 纳米技术在生物传感器设计中有很大的潜力,包括通过 DNA 折纸术对生物传感器表面进行纳米结构化、通过适体进行目标识别,以及基于 DNA 的信号放大策略。在本文中,我们首次使用 DNA 纳米技术描述了实时固相监测 DNA 酶切割活性的概念,用于检测具有光纤表面等离子体共振 (FO-SPR) 生物传感器的特定单链 DNA (ssDNA)。为此,我们首先开发了一种稳健的连接策略,用于将 ssDNA 连接到金纳米粒子上,作为 DNA 酶的底物,对 FO-SPR 生物传感表面进行功能化。接下来,我们建立了由于 10-23 DNA 酶的切割活性引起的 SPR 信号变化与 DNA 酶浓度之间的关系,表明 DNA 酶浓度越高,切割动力学越快。最后,我们在溶液中为 ssDNA 目标物的生物传感实施了这一通用概念。为此,我们设计了一种 DNA 酶抑制剂复合物,由与 ssDNA 目标互补的内部环结构组成,该复合物可作为目标浓度的函数以受控方式释放活性 DNA 酶分子。我们证明了具有可重复检测的目标,理论检测限为 1.4 nM,证明了所提出的连接策略是基于 DNA 酶的 FO-SPR 生物传感概念的关键,该概念在医疗和农业食品领域具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验