Suppr超能文献

高多孔性硅藻生物硅固定相用于薄层色谱法。

Highly-porous diatom biosilica stationary phase for thin-layer chromatography.

机构信息

School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA.

School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA.

出版信息

J Chromatogr A. 2019 Apr 26;1591:162-170. doi: 10.1016/j.chroma.2019.01.037. Epub 2019 Jan 14.

Abstract

This study showed that a nanostructured, highly-porous stationary phase composed of randomly-deposited biosilica frustules isolated from living cells of diatom Pinnularia sp. significantly improved the conventional thin-layer chromatography (TLC) based separation of the triphenylmethane dyes malachite green and fast green relative to silica gel by two mobile phases (9:1:1 v/v 1-butanol:ethanol:water, 5:1:2 v/v 1-butanol:acetic acid:water). Although both stationary phases were composed of amorphous silica rich in silanol groups with particle size of 10-12 μm, diatom biosilica frustules were highly porous, hollow shells with surface structure dominated by 200 nm pore arrays. Diatom biosilica significantly improved the mobility of both malachite green and fast green, enabling the resolution of these analytes. The diatom biosilica layer had a high void fraction of 96% but reduced the flow velocity and permeability constant by a factor of two relative to silica gel. TLC performance was enhanced, as evidenced by ten-fold reduction in theoretical plate height for both analytes using the 1-butanol:acetic acid:water mobile phase, and an increased difference in retention time between malachite green and fast green (ΔR = 0.26) using the 1-butanol:ethanol:water mobile phase. Analysis of plate height vs. solvent front position by the modified van Deemter equation suggested that dispersive mass transfer was reduced, leading to improved analyte resolution, and that surface of the frustule decreased boundary layer resistance, leading to increased analyte flux. Overall, the basis for improved chromatographic performance is believed to be the unique nano- and microstructure of the diatom biosilica frustule.

摘要

本研究表明,由活细胞的甲藻(Pinnularia sp.)生物硅壳随机沉积而成的纳米结构、高度多孔固定相,与硅胶相比,显著改善了基于传统薄层色谱(TLC)的三苯甲烷染料孔雀石绿和亮绿的分离。相对于硅胶,这两种固定相均由富含硅醇基团、粒径为 10-12μm 的无定形二氧化硅组成,但甲藻生物硅壳是高度多孔、中空的壳,表面结构主要由 200nm 孔阵列组成。甲藻生物硅显著提高了孔雀石绿和亮绿的迁移率,从而实现了这些分析物的分离。甲藻生物硅层的空隙率高达 96%,但相对于硅胶,其流动速度和渗透率常数降低了两倍。TLC 性能得到了增强,这表现在使用 1-丁醇:乙酸:水流动相时,两种分析物的理论塔板高度降低了十倍,使用 1-丁醇:乙醇:水流动相时,孔雀石绿和亮绿的保留时间差异增加(ΔR=0.26)。通过修正的 van Deemter 方程分析板高与溶剂前沿位置的关系表明,传质扩散降低,导致分析物分辨率提高,并且壳的表面降低了边界层阻力,导致分析物通量增加。总体而言,改善色谱性能的基础是甲藻生物硅壳的独特纳米和微观结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验