Suppr超能文献

通过亚区域耐受的层次模型提高致病变体定位。

Improved Pathogenic Variant Localization via a Hierarchical Model of Sub-regional Intolerance.

机构信息

Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA.

Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA.

出版信息

Am J Hum Genet. 2019 Feb 7;104(2):299-309. doi: 10.1016/j.ajhg.2018.12.020. Epub 2019 Jan 24.

Abstract

Different parts of a gene can be of differential importance to development and health. This regional heterogeneity is also apparent in the distribution of disease-associated mutations, which often cluster in particular regions of disease-associated genes. The ability to precisely estimate functionally important sub-regions of genes will be key in correctly deciphering relationships between genetic variation and disease. Previous methods have had some success using standing human variation to characterize this variability in importance by measuring sub-regional intolerance, i.e., the depletion in functional variation from expectation within a given region of a gene. However, the ability to precisely estimate local intolerance was restricted by the fact that only information within a given sub-region is used, leading to instability in local estimates, especially for small regions. We show that borrowing information across regions using a Bayesian hierarchical model stabilizes estimates, leading to lower variability and improved predictive utility. Specifically, our approach more effectively identifies regions enriched for ClinVar pathogenic variants. We also identify significant correlations between sub-region intolerance and the distribution of pathogenic variation in disease-associated genes, with AUCs for classifying de novo missense variants in Online Mendelian Inheritance in Man (OMIM) genes of up to 0.86 using exonic sub-regions and 0.91 using sub-regions defined by protein domains. This result immediately suggests that considering the intolerance of regions in which variants are found may improve diagnostic interpretation. We also illustrate the utility of integrating regional intolerance into gene-level disease association tests with a study of known disease-associated genes for epileptic encephalopathy.

摘要

基因的不同部分可能对发育和健康具有不同的重要性。这种区域异质性在与疾病相关的突变分布中也很明显,这些突变通常聚集在与疾病相关基因的特定区域。精确估计基因功能重要的子区域的能力将是正确破译遗传变异与疾病之间关系的关键。以前的方法已经通过使用人类的固定变异来取得了一些成功,通过测量子区域的不宽容性(即在给定基因区域内功能变异的减少)来描述重要性的这种可变性。然而,精确估计局部不宽容性的能力受到以下事实的限制,即仅使用给定子区域内的信息,导致局部估计不稳定,特别是对于小区域。我们表明,使用贝叶斯层次模型跨区域借用信息可以稳定估计值,从而降低变异性并提高预测效用。具体来说,我们的方法更有效地识别富含 ClinVar 致病性变异的区域。我们还发现了子区域不宽容性与疾病相关基因中致病性变异分布之间的显著相关性,使用外显子子区域对在线孟德尔遗传人体内(OMIM)基因中的从头错义变异进行分类的 AUC 高达 0.86,使用蛋白质结构域定义的子区域的 AUC 高达 0.91。这一结果立即表明,考虑到变异所在区域的不宽容性可能会改善诊断解释。我们还通过对已知癫痫性脑病相关基因的研究,说明了将区域不宽容性整合到基因水平疾病关联测试中的效用。

相似文献

5
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

引用本文的文献

本文引用的文献

4
Human gene essentiality.人类基因的必需性。
Nat Rev Genet. 2018 Jan;19(1):51-62. doi: 10.1038/nrg.2017.75. Epub 2017 Oct 30.
6
Settling the score: variant prioritization and Mendelian disease.清算旧账:变异体优先级排序与孟德尔疾病
Nat Rev Genet. 2017 Oct;18(10):599-612. doi: 10.1038/nrg.2017.52. Epub 2017 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验