Center for Cancer Research and.
Center for Cell-Based Therapy, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA.
J Clin Invest. 2019 Feb 25;129(4):1551-1565. doi: 10.1172/JCI121491.
Across clinical trials, T cell expansion and persistence following adoptive cell transfer (ACT) have correlated with superior patient outcomes. Herein, we undertook a pan-cancer analysis to identify actionable ligand-receptor pairs capable of compromising T cell durability following ACT. We discovered that FASLG, the gene encoding the apoptosis-inducing ligand FasL, is overexpressed within the majority of human tumor microenvironments (TMEs). Further, we uncovered that Fas, the receptor for FasL, is highly expressed on patient-derived T cells used for clinical ACT. We hypothesized that a cognate Fas-FasL interaction within the TME might limit both T cell persistence and antitumor efficacy. We discovered that genetic engineering of Fas variants impaired in the ability to bind FADD functioned as dominant negative receptors (DNRs), preventing FasL-induced apoptosis in Fas-competent T cells. T cells coengineered with a Fas DNR and either a T cell receptor or chimeric antigen receptor exhibited enhanced persistence following ACT, resulting in superior antitumor efficacy against established solid and hematologic cancers. Despite increased longevity, Fas DNR-engineered T cells did not undergo aberrant expansion or mediate autoimmunity. Thus, T cell-intrinsic disruption of Fas signaling through genetic engineering represents a potentially universal strategy to enhance ACT efficacy across a broad range of human malignancies.
在临床试验中,过继细胞转移(ACT)后 T 细胞的扩增和持久性与患者的良好预后相关。在此,我们进行了泛癌症分析,以确定能够在 ACT 后损害 T 细胞耐久性的可行配体-受体对。我们发现 FasL,即编码凋亡诱导配体 FasL 的基因,在大多数人类肿瘤微环境(TME)中过度表达。此外,我们发现 FasL 的受体 Fas 在用于临床 ACT 的患者来源的 T 细胞上高度表达。我们假设 TME 中的同源 Fas-FasL 相互作用可能会限制 T 细胞的持久性和抗肿瘤功效。我们发现,Fas 变体的基因工程使其丧失与 FADD 结合的能力可作为显性负受体(DNR),从而阻止 FasL 在 Fas 阳性 T 细胞中诱导凋亡。与 Fas DNR 共工程改造的 T 细胞在 ACT 后表现出增强的持久性,从而对已建立的实体瘤和血液系统癌症产生更好的抗肿瘤功效。尽管寿命延长,但 Fas DNR 工程改造的 T 细胞并未发生异常扩增或介导自身免疫。因此,通过基因工程对 Fas 信号的 T 细胞内在干扰代表了一种增强广泛人类恶性肿瘤中 ACT 疗效的潜在通用策略。