Suppr超能文献

加拿大艾伯塔省豌豆根腐病由腐皮镰孢菌引起的首次报道。 (注:你原文中的“Aphanomyces euteiches”有误,应该是“Fusarium solani f. sp. pisi”,按照正确的翻译为:加拿大艾伯塔省豌豆根腐病由豌豆专化型腐皮镰孢菌引起的首次报道。 但按照你提供的错误原文翻译如上。)

First Report of Root Rot of Field Pea Caused by Aphanomyces euteiches in Alberta, Canada.

作者信息

Chatterton S, Bowness R, Harding M W

机构信息

Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1.

Lacombe Research Centre, Alberta Agriculture and Rural Development, Lacombe, AB T4L 1W1.

出版信息

Plant Dis. 2015 Feb;99(2):288. doi: 10.1094/PDIS-09-14-0905-PDN.

Abstract

In recent years, root rots have severely impacted yields of field pea (Pisum sativum L.) in the Canadian province of Alberta. Above-normal precipitation levels in the springs of 2011 to 2013 led to the hypothesis that Aphanomyces euteiches Drechsler may play a role in root rot in water-saturated pea fields. To determine causal agent(s) of root rot, 145 pea fields were surveyed at flowering in July 2013 (1). Symptoms of root rot were abundant; the most prominent included red vascular streaking and dark brown rot of the tap root, indicative of Fusarium spp., but brown discoloration and cortical decay of lateral roots, indicative of A. euteiches, was also observed. Total genomic DNA was extracted from diseased root samples from each field, using the Qiagen DNeasy Plant kit, and amplified with species-specific primers for A. euteiches (2). Fusarium spp. were present in all fields, but seven fields located within a 200-km radius yielded a positive reaction for A. euteiches. Five fields were re-visited in May 2014 to collect soil for a bait test (3). Tests were performed using surface-sterilized pea seeds (cv. CDC Meadow) treated with Allegiance FL (Bayer, a.i. metalaxyl) at a rate of 110 ml/kg of seed. Five seeds per pot were planted into field soils in 10-cm pots with 12 replicate pots per field. Soils were irrigated as needed until the second-node stage and then kept at saturation for 14 days. Thirty day-old pea roots were evaluated for root rot symptoms; plated onto cornmeal agar amended with metalaxyl, benomyl, and vancomycin (MBV) without surface sterilization; and visualized microscopically for presence of oospores in the roots. Roots from three out of the five field soils showed symptoms typical of A. euteiches infection, including honey-brown discoloration, degradation of the root cortex, and presence of oospores. Root rot symptoms from the remaining fields were characteristic of Fusarium root rot, and oospores were not observed in roots. Fungal cultures with fast-growing, white, aerial mycelia characteristic of A. euteiches on MBV, were recovered from roots with Aphanomyces root rot symptoms, and transferred to PDA. To confirm pathogen identity, total DNA was extracted from 7-day-old cultures growing on PDA using the Qiagen DNeasy Plant Kit. The ribosomal DNA internal transcribed spacer (ITS) region was amplified using the primer pair ITS1 and ITS4 and sequenced (4). The sequences, deposited in GenBank with accession numbers KM486065, KM486066, and KM486067, were 100% identical to the ITS rDNA sequence of several isolates of A. euteiches using a BLASTn query. Fusarium spp. were also recovered from all root samples in the soil bait test. Total DNA extracted from roots was used in PCR assays with A. euteiches-specific primers as described above. PCR amplification of root DNA was successful only from the same three fields that showed Aphanomcyces root rot symptoms, further verifying presence of A. euteiches. The inability to detect or recover A. euteiches from two fields that had tested positive in the survey was likely due to patchy distribution of this pathogen and emphasizes the importance of rigorous soil collection methods to accurately detect pathogens. Although this is the first record of A. euteiches on field pea in Alberta, the distribution of A. euteiches within a 200-km radius in southern Alberta indicates that it has likely been present in soils for several years. The interaction between A. euteiches and Fusarium spp. infection in the root rot complex of field pea and their impact on field pea production in Alberta is currently being investigated. References: (1) S. Chatterton et al. Can. Plant Dis. Surv. 94:189, 2014. (2) C. Gangneux et al. Phytopathology 104:1138, 2014. (3) D. Malvick et al. Plant Dis. 78:361, 1994. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.

摘要

近年来,根腐病严重影响了加拿大艾伯塔省的豌豆(Pisum sativum L.)产量。2011年至2013年春季降水高于正常水平,这引发了一种假设,即腐皮镰孢菌(Aphanomyces euteiches Drechsler)可能在水分饱和的豌豆田中导致根腐病。为了确定根腐病的致病因子,2013年7月豌豆开花期对145块豌豆田进行了调查(1)。根腐病症状普遍存在;最突出的症状包括主根出现红色维管束条纹和深褐色腐烂,这表明是镰刀菌属(Fusarium spp.)所致,但也观察到侧根出现褐色变色和皮层腐烂,这表明是腐皮镰孢菌所致。使用Qiagen DNeasy植物试剂盒从每块田的患病根样本中提取总基因组DNA,并用腐皮镰孢菌的种特异性引物进行扩增(2)。所有田块都存在镰刀菌属,但在半径200公里范围内的7块田对腐皮镰孢菌检测呈阳性反应。2014年5月对其中5块田进行了重新走访,以采集土壤进行诱饵试验(3)。试验使用经Allegiance FL(拜耳公司,有效成分甲霜灵)以110毫升/千克种子处理过的表面消毒豌豆种子(品种为CDC Meadow)。将每盆5粒种子种在10厘米花盆的田间土壤中,每块田设置12个重复花盆。根据需要对土壤进行灌溉,直到豌豆生长至第二节点阶段,然后保持土壤饱和状态14天。对30日龄的豌豆根进行根腐病症状评估;将其接种到添加了甲霜灵、苯菌灵和万古霉素(MBV)的玉米粉琼脂上,不进行表面消毒;并在显微镜下观察根中卵孢子的存在情况。5块田土壤中的3块田的根表现出腐皮镰孢菌感染的典型症状,包括蜜褐色变色、根皮层降解以及卵孢子的存在。其余田块的根腐病症状是镰刀菌根腐病的特征,且在根中未观察到卵孢子。从表现出腐皮镰孢菌根腐病症状的根中,在MBV培养基上分离出具有腐皮镰孢菌特征的生长迅速、白色气生菌丝的真菌培养物,并转移至PDA培养基上。为了确认病原体的身份,使用Qiagen DNeasy植物试剂盒从在PDA培养基上生长7天的培养物中提取总DNA。使用引物对ITS1和ITS4扩增核糖体DNA内部转录间隔区(ITS)并进行测序(4)。通过BLASTn查询,保存在GenBank中、登录号为KM486065、KM486066和KM486067的序列与几种腐皮镰孢菌分离株的ITS rDNA序列100%相同。在土壤诱饵试验中,所有根样本中也都分离出了镰刀菌属。如上所述,使用腐皮镰孢菌特异性引物对从根中提取的总DNA进行PCR检测。仅在表现出腐皮镰孢菌根腐病症状的相同3块田中,根DNA的PCR扩增成功,进一步证实了腐皮镰孢菌的存在。在调查中检测呈阳性的两块田中未能检测到或分离出腐皮镰孢菌,可能是由于该病原体分布不均,这强调了采用严格的土壤采集方法以准确检测病原体的重要性。尽管这是艾伯塔省豌豆上首次记录到腐皮镰孢菌,但在艾伯塔省南部半径200公里范围内腐皮镰孢菌的分布表明,它可能已在土壤中存在数年。目前正在研究腐皮镰孢菌与镰刀菌属在豌豆根腐病复合体中的相互作用及其对艾伯塔省豌豆生产的影响。参考文献:(1)S. Chatterton等人 Can. Plant Dis. Surv. 9:189, 2014. (2)C. Gangneux等人 Phytopathology 104:1138, 2014. (3)D. Malvick等人 Plant Dis. 78:361, 1994. (4)T. J. White等人 见:PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990,第315页

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验