Suppr超能文献

基本噪声多参数量子界限。

Fundamental noisy multiparameter quantum bounds.

作者信息

Roy Shibdas

机构信息

Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom.

出版信息

Sci Rep. 2019 Jan 31;9(1):1038. doi: 10.1038/s41598-018-37583-7.

Abstract

Quantum multiparameter estimation involves estimating multiple parameters simultaneously and can be more precise than estimating them individually. Our interest here is to determine fundamental quantum limits to the achievable multiparameter estimation precision in the presence of noise. We first present a lower bound to the estimation error covariance for a noisy initial probe state evolving through a noiseless quantum channel. We then present a lower bound to the estimation error covariance in the most general form for a noisy initial probe state evolving through a noisy quantum channel. We show conditions and accordingly measurements to attain these estimation precision limits for noisy systems. We see that the Heisenberg precision scaling of 1/N can be achieved with a probe comprising N particles even in the presence of noise. In fact, some noise in the initial probe state or the quantum channel can serve as a feature rather than a bug, since the estimation precision scaling achievable in the presence of noise in the initial state or the channel in some situations is impossible in the absence of noise in the initial state or the channel. However, a lot of noise harms the quantum advantage achievable with N parallel resources, and allows for a best precision scaling of [Formula: see text]. Moreover, the Heisenberg precision limit can be beaten with noise in the channel, and we present a super-Heisenberg precision limit with scaling of 1/N for optimal amount of noise in the channel, characterized by one-particle evolution operators. Furthermore, using γ-particle evolution operators for the noisy channel, where γ > 1, the best precision scaling attainable is 1/N, which is otherwise known to be only possible using 2γ-particle evolution operators for a noiseless channel.

摘要

量子多参数估计涉及同时估计多个参数,并且可能比单独估计这些参数更精确。我们这里感兴趣的是确定在存在噪声的情况下可实现的多参数估计精度的基本量子极限。我们首先给出了通过无噪声量子信道演化的有噪声初始探测态的估计误差协方差的下界。然后,我们给出了通过有噪声量子信道演化的有噪声初始探测态的最一般形式的估计误差协方差的下界。我们展示了达到有噪声系统这些估计精度极限的条件以及相应的测量方法。我们发现,即使存在噪声,由N个粒子组成的探测态也能实现1/N的海森堡精度标度。事实上,初始探测态或量子信道中的一些噪声可以成为一个特点而非缺陷,因为在某些情况下,初始态或信道存在噪声时可实现的估计精度标度在初始态或信道无噪声时是不可能的。然而,大量噪声会损害N个并行资源可实现的量子优势,并允许达到[公式:见原文]的最佳精度标度。此外,信道中的噪声可以突破海森堡精度极限,我们给出了对于信道中最佳噪声量具有1/N标度的超海森堡精度极限,其由单粒子演化算符表征。此外,对于有噪声信道使用γ粒子演化算符(其中γ > 1),可达到的最佳精度标度为1/N,否则已知这仅在无噪声信道中使用2γ粒子演化算符时才可能实现。

相似文献

1
Fundamental noisy multiparameter quantum bounds.
Sci Rep. 2019 Jan 31;9(1):1038. doi: 10.1038/s41598-018-37583-7.
2
"Super-Heisenberg" and Heisenberg Scalings Achieved Simultaneously in the Estimation of a Rotating Field.
Phys Rev Lett. 2021 Feb 19;126(7):070503. doi: 10.1103/PhysRevLett.126.070503.
3
Multiparameter Estimation with Two-Qubit Probes in Noisy Channels.
Entropy (Basel). 2023 Jul 26;25(8):1122. doi: 10.3390/e25081122.
4
Sensitivity Bounds for Multiparameter Quantum Metrology.
Phys Rev Lett. 2018 Sep 28;121(13):130503. doi: 10.1103/PhysRevLett.121.130503.
5
Robust Quantum State Tomography Method for Quantum Sensing.
Sensors (Basel). 2022 Mar 30;22(7):2669. doi: 10.3390/s22072669.
6
Noisy metrology beyond the standard quantum limit.
Phys Rev Lett. 2013 Sep 20;111(12):120401. doi: 10.1103/PhysRevLett.111.120401. Epub 2013 Sep 18.
7
Achieving the Heisenberg limit in quantum metrology using quantum error correction.
Nat Commun. 2018 Jan 8;9(1):78. doi: 10.1038/s41467-017-02510-3.
8
Minimal Tradeoff and Ultimate Precision Limit of Multiparameter Quantum Magnetometry under the Parallel Scheme.
Phys Rev Lett. 2020 Jul 10;125(2):020501. doi: 10.1103/PhysRevLett.125.020501.
9
Quantum-enhanced metrology for multiple phase estimation with noise.
Sci Rep. 2014 Aug 4;4:5933. doi: 10.1038/srep05933.
10
Interaction-based quantum metrology showing scaling beyond the Heisenberg limit.
Nature. 2011 Mar 24;471(7339):486-9. doi: 10.1038/nature09778.

本文引用的文献

1
Sensitivity Bounds for Multiparameter Quantum Metrology.
Phys Rev Lett. 2018 Sep 28;121(13):130503. doi: 10.1103/PhysRevLett.121.130503.
2
Quantum metrology beyond Heisenberg limit with entangled matter wave solitons.
Opt Express. 2018 Jul 23;26(15):19583-19595. doi: 10.1364/OE.26.019583.
3
Multiparameter Estimation in Networked Quantum Sensors.
Phys Rev Lett. 2018 Feb 23;120(8):080501. doi: 10.1103/PhysRevLett.120.080501.
4
Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases.
Phys Rev Lett. 2017 Sep 29;119(13):130504. doi: 10.1103/PhysRevLett.119.130504.
5
Achieving the Heisenberg limit in quantum metrology using quantum error correction.
Nat Commun. 2018 Jan 8;9(1):78. doi: 10.1038/s41467-017-02510-3.
6
Heisenberg-scaling measurement of the single-photon Kerr non-linearity using mixed states.
Nat Commun. 2018 Jan 8;9(1):93. doi: 10.1038/s41467-017-02487-z.
7
Investigating quantum metrology in noisy channels.
Sci Rep. 2017 Nov 30;7(1):16622. doi: 10.1038/s41598-017-16710-w.
8
Nonlinear Quantum Metrology of Many-Body Open Systems.
Phys Rev Lett. 2017 Jul 7;119(1):010403. doi: 10.1103/PhysRevLett.119.010403. Epub 2017 Jul 6.
9
Quantum-enhanced multiparameter estimation in multiarm interferometers.
Sci Rep. 2016 Jul 6;6:28881. doi: 10.1038/srep28881.
10
Quantum Enhanced Estimation of a Multidimensional Field.
Phys Rev Lett. 2016 Jan 22;116(3):030801. doi: 10.1103/PhysRevLett.116.030801. Epub 2016 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验