Suppr超能文献

面向大规模工业环境的 3D 传感器数据的嵌入式处理和压缩。

Embedded Processing and Compression of 3D Sensor Data for Large Scale Industrial Environments.

机构信息

Department of Engineering Sciences, University of Agder, 4879 Grimstad, Norway.

出版信息

Sensors (Basel). 2019 Feb 2;19(3):636. doi: 10.3390/s19030636.

Abstract

This paper presents a scalable embedded solution for processing and transferring 3D point cloud data. Sensors based on the time-of-flight principle generate data which are processed on a local embedded computer and compressed using an octree-based scheme. The compressed data is transferred to a central node where the individual point clouds from several nodes are decompressed and filtered based on a novel method for generating intensity values for sensors which do not natively produce such a value. The paper presents experimental results from a relatively large industrial robot cell with an approximate size of 10 m × 10 m × 4 m. The main advantage of processing point cloud data locally on the nodes is scalability. The proposed solution could, with a dedicated Gigabit Ethernet local network, be scaled up to approximately 440 sensor nodes, only limited by the processing power of the central node that is receiving the compressed data from the local nodes. A compression ratio of 40.5 was obtained when compressing a point cloud stream from a single Microsoft Kinect V2 sensor using an octree resolution of 4 cm.

摘要

本文提出了一种可扩展的嵌入式解决方案,用于处理和传输 3D 点云数据。基于飞行时间原理的传感器生成的数据在本地嵌入式计算机上进行处理,并使用基于八叉树的方案进行压缩。压缩后的数据被传输到中央节点,在那里,来自多个节点的各个点云根据一种新方法进行解压缩和过滤,该方法用于为不原生产生此类值的传感器生成强度值。本文介绍了来自一个大约 10 m×10 m×4 m 大小的工业机器人单元的实验结果。在节点上本地处理点云数据的主要优势是可扩展性。使用专用的千兆以太网本地网络,该解决方案可以扩展到大约 440 个传感器节点,这仅受接收来自本地节点的压缩数据的中央节点的处理能力限制。使用 4 cm 的八叉树分辨率压缩单个 Microsoft Kinect V2 传感器的点云流时,获得了 40.5 的压缩比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f022/6387135/0a048118a804/sensors-19-00636-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验