Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France.
Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, Paris, France.
Antimicrob Agents Chemother. 2019 Mar 27;63(4). doi: 10.1128/AAC.02039-18. Print 2019 Apr.
The l,d-transpeptidase (Ldt) mediates resistance to most β-lactam antibiotics in this bacterium by replacing classical peptidoglycan polymerases. The catalytic Cys of Ldt is rapidly acylated by β-lactams belonging to the carbapenem class but not by penams or cephems. We previously reported quantum calculations and kinetic analyses for Ldt and showed that the inactivation profile is not determined by differences in drug binding ( [equilibrium dissociation constant] values in the 50 to 80 mM range). In this study, we analyzed the reaction of a Cys sulfhydryl with various β-lactams in the absence of the enzyme environment in order to compare the intrinsic reactivity of drugs belonging to the penam, cephem, and carbapenem classes. For this purpose, we synthesized cyclic Cys-Asn (cCys-Asn) to generate a soluble molecule with a sulfhydryl closely mimicking a cysteine in a polypeptide chain, thereby avoiding free reactive amino and carboxyl groups. Computational studies identified a thermodynamically favored pathway involving a concerted rupture of the β-lactam amide bond and formation of an amine anion. Energy barriers indicated that the drug reactivity was the highest for nonmethylated carbapenems, intermediate for methylated carbapenems and cephems, and the lowest for penams. Electron-withdrawing groups were key reactivity determinants by enabling delocalization of the negative charge of the amine anion. Acylation rates of cCys-Asn determined by spectrophotometry revealed the same order in the reactivity of β-lactams. We concluded that the rate of Ldt acylation is largely determined by the β-lactam reactivity with one exception, as the enzyme catalytic pocket fully compensated for the detrimental effect of carbapenem methylation.
该 l,d-转肽酶(Ldt)通过取代经典的肽聚糖聚合酶介导该细菌对大多数β-内酰胺抗生素的耐药性。Ldt 的催化 Cys 被属于碳青霉烯类的β-内酰胺快速酰化,但不被青霉素或头孢菌素酰化。我们之前报道了 Ldt 的量子计算和动力学分析,并表明失活模式不是由药物结合的差异决定的(在 50 到 80mM 范围内的[平衡解离常数]值)。在这项研究中,我们在没有酶环境的情况下分析了半胱氨酸巯基与各种β-内酰胺的反应,以便比较属于青霉素、头孢菌素和碳青霉烯类的药物的固有反应性。为此,我们合成了环半胱氨酸-天冬酰胺(cCys-Asn),以生成一种具有巯基的可溶性分子,该巯基紧密模拟多肽链中的半胱氨酸,从而避免了游离的反应性氨基和羧基。计算研究确定了一条热力学有利的途径,涉及β-内酰胺酰胺键的协同断裂和胺阴离子的形成。能量障碍表明,非甲基化碳青霉烯的药物反应性最高,甲基化碳青霉烯和头孢菌素的反应性中等,青霉素的反应性最低。吸电子基团是通过使胺阴离子的负电荷离域来确定药物反应性的关键决定因素。通过分光光度法测定的 cCys-Asn 的酰化速率揭示了β-内酰胺反应性的相同顺序。我们得出的结论是,Ldt 酰化的速率在很大程度上取决于β-内酰胺的反应性,但有一个例外,因为酶催化口袋完全补偿了碳青霉烯甲基化的不利影响。