Suppr超能文献

贝那唑嗪纳米和微颗粒的研制及特性:儿科治疗恰加斯病的新工具?

Development and characterization of benznidazole nano- and microparticles: A new tool for pediatric treatment of Chagas disease?

机构信息

Departamento de Ciencias Básicas y Aplicadas, Universidad Nacional del Chaco Austral, Cte. Fernández 755, 3700, Pcia, Roque Sáenz Peña, Chaco, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pcia, Roque Sáenz Peña, Chaco, Argentina.

Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, 2000, Rosario, Argentina; Área Técnica Farmacéutica, Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.

出版信息

Colloids Surf B Biointerfaces. 2019 May 1;177:169-177. doi: 10.1016/j.colsurfb.2019.01.039. Epub 2019 Jan 23.

Abstract

Benznidazole (BNZ) is the drug of choice for the treatment of Chagas disease in many countries. However, its low water solubility produces low and/or variable oral bioavailability. Thus, the aim of this work was to formulate micro- and nanoparticles based on Eudragit RS PO and Eudragit RL PO as a convenient approach to increase the dissolution rate of BNZ. The microparticles were obtained by means of spray-drying process while the nanoparticles were prepared through the nanoprecipitation technique and further freeze-drying. The results indicated that nanoparticles were obtained in 86% yield while microparticles were obtained in 68% yield. In both cases, the encapsulation efficiency of particles was greater than 78% while drug loading capacity was nearly 24% w/w and 18% w/w, after spray-drying and freeze-drying procedures, respectively. Images of scanning electron microscopy showed that the particles obtained by spray-drying and freeze-drying were in the micrometer and nanometer scale, respectively. FT-IR spectra of BNZ-loaded particles obtained by both methods showed characteristic bands of BNZ confirming that part of drug remained on their surface. Thermal analysis revealed that the drug crystallinity after both methods decreased. Physical stability evaluation of the nanoparticles confirmed that Pluronic F68 was suitable to keep the particles size in a range of 300 nm after 70 days storage at 4 ± 2 °C. In-vitro release studies showed increased dissolution rate of drug from the particles obtained by both methods respect to untreated BNZ. The kinetics of drug release in acid media followed the Higuchi kinetics indicating drug diffusion mechanism from particles.

摘要

苯硝唑(BNZ)是许多国家治疗恰加斯病的首选药物。然而,其低水溶性导致口服生物利用度低和/或可变。因此,本工作的目的是制备基于 Eudragit RS PO 和 Eudragit RL PO 的微球和纳米粒,作为提高 BNZ 溶解速率的一种简便方法。微球通过喷雾干燥工艺获得,而纳米粒通过纳米沉淀技术制备并进一步冷冻干燥。结果表明,纳米粒的收率为 86%,而微球的收率为 68%。在这两种情况下,颗粒的包封效率均大于 78%,而载药量分别为喷雾干燥和冷冻干燥后近 24%w/w 和 18%w/w。扫描电子显微镜图像显示,喷雾干燥和冷冻干燥得到的颗粒分别处于微米和纳米尺度。通过两种方法获得的载 BNZ 颗粒的傅里叶变换红外光谱显示 BNZ 的特征带,证实部分药物仍保留在其表面。热分析表明,两种方法后药物的结晶度均降低。纳米粒的物理稳定性评价证实,Pluronic F68 适合在 4±2°C 储存 70 天后将粒径保持在 300nm 范围内。体外释放研究表明,与未处理的 BNZ 相比,两种方法得到的颗粒中药物的溶解速率均有所提高。在酸性介质中药物释放的动力学遵循 Higuchi 动力学,表明药物从颗粒中的扩散机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验