Suppr超能文献

使用自动磁共振成像结构分割技术研究tau蛋白病小鼠模型中疾病进展和治疗效果的纵向和横断面脑容量差异。

Study the Longitudinal and Cross-Sectional Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation.

作者信息

Ma Da, Holmes Holly E, Cardoso Manuel J, Modat Marc, Harrison Ian F, Powell Nick M, O'Callaghan James M, Ismail Ozama, Johnson Ross A, O'Neill Michael J, Collins Emily C, Beg Mirza F, Popuri Karteek, Lythgoe Mark F, Ourselin Sebastien

机构信息

Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.

Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom.

出版信息

Front Neurosci. 2019 Jan 24;13:11. doi: 10.3389/fnins.2019.00011. eCollection 2019.

Abstract

Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data or is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal and single-time-point MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from to , while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of data compared to the data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the data can be improved by incorporating longitudinal information, which is not possible for data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the and structural MRI data. Our results emphasize the importance of longitudinal analysis for data analysis.

摘要

从结构磁共振成像(MRI)数据集中提取的脑容量测量值是研究神经退行性疾病小鼠模型广泛接受的神经影像生物标志物。在实验设计阶段以及数据分析过程中,是否获取和分析数据是一个关键决策。在这项工作中,我们使用精确的自动多图谱结构分割方法,从同一动物获取的纵向和单时间点MRI中提取脑结构,并比较了相应的统计分析和分类分析。我们发现,大多数灰质结构的体积从[起始时间]到[结束时间]减小,而大多数白质结构的体积增加。结构体积变化的程度在不同的基因品系和处理之间也有所不同。此外,我们表明,即使在重新采样到相同分辨率水平后,纵向数据在统计和分类能力方面也优于单时间点数据。我们进一步证明,通过纳入纵向信息可以提高纵向数据的分类能力,而单时间点数据则无法做到这一点。总之,本文展示了基于纵向和单时间点结构MRI数据的体积分析之间的组织特异性变化以及统计和分类能力的差异。我们的结果强调了纵向分析在纵向数据分析中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aac8/6354066/af2c2b262daf/fnins-13-00011-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验