Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China.
Interdisciplinary Division of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
Nat Commun. 2019 Feb 13;10(1):725. doi: 10.1038/s41467-019-08506-5.
Ether based electrolytes have surfaced as alternatives to conventional carbonates allowing for enhanced electrochemical performance of sodium-ion batteries; however, the primary source of the improvement remains poorly understood. Here we show that coupling titanium dioxide and other anode materials with diglyme does enable higher efficiency and reversible capacity than those for the combination involving ester electrolytes. Importantly, the electrolyte dependent performance is revealed to be the result of the different structural evolution induced by a varied sodiation depth. A suit of characterizations show that the energy barrier to charge transfer at the interface between electrolyte and electrode is the factor that dominates the interfacial electrochemical characteristics and therefore the energy storage properties. Our study proposes a reliable parameter to assess the intricate sodiation dynamics in sodium-ion batteries and could guide the design of aprotic electrolytes for next generation rechargeable batteries.
基于醚的电解质已经成为传统碳酸盐的替代品,允许提高钠离子电池的电化学性能;然而,改善的主要原因仍不清楚。在这里,我们表明,将二氧化钛和其他阳极材料与二甘醇结合使用确实可以比酯基电解质的组合实现更高的效率和可逆容量。重要的是,依赖电解质的性能被揭示为不同的结构演变的结果,这种结构演变是由不同的钠化深度引起的。一系列的特性表明,在电解质和电极之间的界面处的电荷转移的能垒是支配界面电化学特性的因素,因此是储能特性的因素。我们的研究提出了一个可靠的参数来评估钠离子电池中复杂的钠化动力学,并且可以指导下一代可充电电池的非质子电解质的设计。