Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia.
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA.
Neuropharmacology. 2019 May 1;149:83-96. doi: 10.1016/j.neuropharm.2019.02.005. Epub 2019 Feb 11.
Allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGlu) have been proposed as potential therapies for various CNS disorders. These ligands bind to sites distinct from the orthosteric (or endogenous) ligand, often with improved subtype selectivity and spatio-temporal control over receptor responses. We recently revealed that mGlu allosteric agonists and positive allosteric modulators exhibit biased agonism and/or modulation. To establish whether negative allosteric modulators (NAMs) engender similar bias, we rigorously characterized the pharmacology of eight diverse mGlu NAMs. Radioligand inhibition binding studies revealed novel modes of interaction with mGlu for select NAMs, with biphasic or incomplete inhibition of the radiolabeled NAM, [H]methoxy-PEPy. We assessed mGlu-mediated intracellular Ca (iCa) mobilization and inositol phosphate (IP) accumulation in HEK293A cells stably expressing low levels of mGlu (HEK293A-rat mGlu-low) and mouse embryonic cortical neurons. The apparent affinity of acetylenic NAMs, MPEP, MTEP and dipraglurant, was dependent on the signaling pathway measured, agonist used, and cell type (HEK293A-rat mGlu-low versus mouse cortical neurons). In contrast, the acetylenic partial NAM, M-5MPEP, and structurally distinct NAMs (VU0366248, VU0366058, fenobam), had similar affinity estimates irrespective of the assay or cellular background. Biased modulation was evident for VU0366248 in mouse cortical neurons where it was a NAM for DHPG-mediated iCa mobilization, but neutral with DHPG in IP accumulation assays. Overall, this study highlights the inherent complexity in mGlu NAM pharmacology that we hypothesize may influence interpretation when translating into preclinical models and beyond in the design and development of novel therapeutics for neuropsychiatric and neurological disorders.
代谢型谷氨酸受体亚型 5(mGlu)的变构调节剂已被提议作为治疗各种中枢神经系统疾病的潜在疗法。这些配体与正位(或内源性)配体结合的位点不同,通常具有改善的亚型选择性和对受体反应的时空控制。我们最近发现,mGlu 变构激动剂和正变构调节剂表现出偏激动剂和/或调节作用。为了确定负变构调节剂(NAMs)是否产生类似的偏向性,我们严格表征了八种不同的 mGlu NAMs 的药理学。放射性配体抑制结合研究揭示了某些 NAMs 与 mGlu 相互作用的新方式,对放射性标记的 NAM [H]methoxy-PEPy 表现出双相或不完全抑制。我们评估了在稳定表达低水平 mGlu(HEK293A-rat mGlu-low)的 HEK293A 细胞和小鼠胚胎皮质神经元中 mGlu 介导的细胞内 Ca(iCa)动员和肌醇磷酸盐(IP)积累。炔烃 NAMs、MPEP、MTEP 和 dipraglurant 的表观亲和力取决于所测量的信号通路、使用的激动剂和细胞类型(HEK293A-rat mGlu-low 与小鼠皮质神经元)。相比之下,炔烃部分 NAM、M-5MPEP 和结构不同的 NAMs(VU0366248、VU0366058、fenobam)具有相似的亲和力估计值,无论测定法或细胞背景如何。VU0366248 在小鼠皮质神经元中表现出偏调节作用,在 DHPG 介导的 iCa 动员中它是 NAM,但在 IP 积累测定中与 DHPG 呈中性。总体而言,这项研究强调了 mGlu NAM 药理学中固有的复杂性,我们假设这可能会影响转化为临床前模型以及在神经精神和神经退行性疾病的新型治疗药物的设计和开发中的解释。