Suppr超能文献

基于快速区域卷积神经网络的数字乳腺断层合成钼靶中肿块的计算机辅助检测。

Computer-aided detection of mass in digital breast tomosynthesis using a faster region-based convolutional neural network.

机构信息

Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, High Education Zone, Hangzhou 310018, China.

Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, High Education Zone, Hangzhou 310018, China.

出版信息

Methods. 2019 Aug 15;166:103-111. doi: 10.1016/j.ymeth.2019.02.010. Epub 2019 Feb 13.

Abstract

Digital breast tomosynthesis (DBT) is a newly developed three-dimensional tomographic imaging modality in the field of breast cancer screening designed to alleviate the limitations of conventional digital mammography-based breast screening methods. A computer-aided detection (CAD) system was designed for masses in DBT using a faster region-based convolutional neural network (faster-RCNN). To this end, a data set was collected, including 89 patients with 105 masses. An efficient detection architecture of convolution neural network with a region proposal network (RPN) was used for each slice to generate region proposals (i.e., bounding boxes) with a mass likelihood score. In each DBT volume, a slice fusion procedure was used to merge the detection results on consecutive 2D slices into one 3D DBT volume. The performance of the CAD system was evaluated using free-response receiver operating characteristic (FROC) curves. Our RCNN-based CAD system was compared with a deep convolutional neural network (DCNN)-based CAD system. The RCNN-based CAD generated a performance with an area under the ROC (AUC) of 0.96, whereas the DCNN-based CAD achieved a performance with AUC of 0.92. For lesion-based mass detection, the sensitivity of RCNN-based CAD was 90% at 1.54 false positive (FP) per volume, whereas the sensitivity of DCNN-based CAD was 90% at 2.81 FPs/volume. For breast-based mass detection, RCNN-based CAD generated a sensitivity of 90% at 0.76 FP/breast, which is significantly increased compared with the DCNN-based CAD with a sensitivity of 90% at 2.25 FPs/breast. The results suggest that the faster R-CNN has the potential to augment the prescreening and FP reduction in the CAD system for masses.

摘要

数字乳腺断层合成术(DBT)是一种新开发的三维断层成像技术,用于乳腺癌筛查领域,旨在缓解基于传统数字乳腺摄影的乳腺筛查方法的局限性。设计了一种基于计算机辅助检测(CAD)的系统,用于 DBT 中的肿块检测,使用更快的基于区域的卷积神经网络(faster-RCNN)。为此,收集了一个包括 89 名患者和 105 个肿块的数据集。使用具有区域建议网络(RPN)的卷积神经网络的高效检测架构对每个切片进行操作,以生成具有肿块可能性评分的区域建议(即边界框)。在每个 DBT 体积中,使用切片融合过程将连续的 2D 切片上的检测结果合并到一个 3D DBT 体积中。使用自由响应接收者操作特征(FROC)曲线评估 CAD 系统的性能。我们的基于 RCNN 的 CAD 系统与基于深度卷积神经网络(DCNN)的 CAD 系统进行了比较。基于 RCNN 的 CAD 生成的性能具有 0.96 的 ROC 下面积(AUC),而基于 DCNN 的 CAD 则具有 0.92 的 AUC。对于基于病变的肿块检测,基于 RCNN 的 CAD 的灵敏度为 1.54 个假阳性(FP)/体积时为 90%,而基于 DCNN 的 CAD 的灵敏度为 2.81 FP/体积时为 90%。对于基于乳房的肿块检测,基于 RCNN 的 CAD 的灵敏度为 0.76 FP/乳房,与基于 DCNN 的 CAD 的灵敏度为 90%相比,灵敏度显著提高,灵敏度为 2.25 FP/乳房。结果表明,更快的 R-CNN 有可能增强 CAD 系统中肿块的预筛查和 FP 减少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验