Suppr超能文献

由水相动态相分离衍生的大孔水凝胶。

Macroporous hydrogels derived from aqueous dynamic phase separation.

机构信息

Tissue Engineering and Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland.

Axon Growth and Regeneration Laboratory, German Center for Neurodegenerative Diseases, Sigmund-Freud-Str. 27, 53127, Bonn, Germany.

出版信息

Biomaterials. 2019 Apr;200:56-65. doi: 10.1016/j.biomaterials.2019.01.047. Epub 2019 Feb 2.

Abstract

A method to generate injectable macroporous hydrogels based on partitioning of polyethylene glycol (PEG) and high viscous polysaccharides is presented. Step growth polymerization of PEG was used to initiate a phase separation and the formation of a connected macroporous network with tunable dimensions. The possibilities and physical properties of this new category of materials were examined, and then applied to address some challenges in neural engineering. First, non-degradable macroporous gels were shown to support rapid neurite extension from encapsulated dorsal root ganglia (DRGs) with unprecedented long-term stability. Then, dissociated primary rat cortical neurons could be encapsulated with >95% viability, and extended neurites at the fast rate of ≈100 μm/day and formed synapses, resulting in functional, highly viable and long-term stable 3D neural networks in the synthetic extracellular matrix (ECM). Adhesion cues were found unnecessary provided the gels have optimal physical properties. Normal electrophysiological properties were confirmed on 3D cultured mouse hippocampal neurons. Finally, the macroporous gels supported axonal growth in a rat sciatic nerve injury model when used as a conduit filling. The combination of injectability, tunable pore size, stability, connectivity, transparency, cytocompatibility and biocompatibility, makes this new class of materials attractive for a wide range of applications.

摘要

提出了一种基于聚乙二醇(PEG)和高粘性多糖分配的可注射大孔水凝胶的生成方法。PEG 的逐步聚合反应用于引发相分离和具有可调尺寸的连通大孔网络的形成。研究了这种新材料的可能性和物理性质,并将其应用于解决神经工程中的一些挑战。首先,不可降解的大孔凝胶表现出对包封的背根神经节(DRG)快速神经突延伸的支持,具有前所未有的长期稳定性。然后,原代大鼠皮质神经元的分离可以在>95%的存活率下进行封装,并且以≈100 μm/天的快速速度延伸神经突,并形成突触,从而在合成细胞外基质(ECM)中形成功能、高存活率和长期稳定的 3D 神经网络。只要凝胶具有最佳的物理性能,就不需要粘附信号。在 3D 培养的小鼠海马神经元上证实了正常的电生理特性。最后,当用作导管填充时,大孔凝胶在大鼠坐骨神经损伤模型中支持轴突生长。可注射性、可调孔径、稳定性、连通性、透明度、细胞相容性和生物相容性的结合,使得这种新材料在广泛的应用中具有吸引力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验