Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.
Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
Biochem Biophys Res Commun. 2019 Mar 26;511(1):135-140. doi: 10.1016/j.bbrc.2019.01.141. Epub 2019 Feb 14.
The hypothetical OCC_00372 protein from Thermococcus litoralis is a member of the ProR superfamily from hyperthermophilic archaea and exhibits unique bifunctional proline racemase/hydroxyproline 2-epimerase activity. However, the molecular mechanism of the broad substrate specificity and extreme thermostability of this enzyme (TlProR) remains unclear. Here we determined the crystal structure of TlProR at 2.7 Å resolution. Of note, a substrate proline molecule, derived from expression host Escherichia coli cells, was tightly bound in the active site of TlProR. The substrate bound structure and mutational analyses suggested that Trp241 is involved in hydroxyproline recognition by making a hydrogen bond between the indole group of Trp241 and the hydroxyl group of hydroxyproline. Additionally, Tyr171 may contribute to the thermostability by making hydrogen bonds between the hydroxyl group of Tyr171 and catalytic residues. Our structural and functional analyses provide a structural basis for understanding the molecular mechanism of substrate specificity and thermostability of ProR superfamily proteins.
来自嗜热古菌的 ProR 超家族的假定 OCC_00372 蛋白是 Thermococcus litoralis 的一种蛋白,具有独特的双功能脯氨酸消旋酶/羟脯氨酸 2-差向异构酶活性。然而,这种酶(TlProR)广泛的底物特异性和极端热稳定性的分子机制尚不清楚。在这里,我们确定了 TlProR 在 2.7Å分辨率下的晶体结构。值得注意的是,一个来源于表达宿主大肠杆菌细胞的脯氨酸底物分子被紧密结合在 TlProR 的活性位点中。底物结合结构和突变分析表明,色氨酸 241 通过色氨酸 241 的吲哚基团和羟脯氨酸的羟基之间形成氢键参与羟脯氨酸的识别。此外,酪氨酸 171 可能通过酪氨酸 171 的羟基与催化残基之间形成氢键来有助于热稳定性。我们的结构和功能分析为理解 ProR 超家族蛋白的底物特异性和热稳定性的分子机制提供了结构基础。