Suppr超能文献

石墨烯上 CoPc 和 FePc 分子的电子和磁性能:衬底、缺陷和氢吸附效应。

Electronic and magnetic properties of CoPc and FePc molecules on graphene: the substrate, defect, and hydrogen adsorption effects.

机构信息

Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.

出版信息

Phys Chem Chem Phys. 2019 Mar 6;21(10):5424-5434. doi: 10.1039/c8cp07091a.

Abstract

Transition metal phthalocyanines (TMPcs) are particularly appealing for spintronic processing and data storage devices due to their structural simplicity and functional flexibility. To realize effective control of the spins in TMPc-based systems, it is necessary to quantify how the structural and chemical environment of the molecule affects its spin center. Herein we perform a detailed investigation of the electronic and spintronic properties of vertically stacked heterostructures formed by CoPc or FePc adsorbed on a monolayer of graphene under the influences of the gold substrate, vacancies in graphene, and extra atomic hydrogen coordination on the TMPc. By using density functional theory (DFT), we reveal that both the TMPc molecules prefer the carbon-top position on graphene, and the existence of the Au substrate enhances the stability of the adsorption, while this enhanced adsorption will not modify the molecular magnetism, keeping it the same value as in the free standing case. Moreover, with the aid of a combination of DFT and ab initio wavefunction-based calculations, our results indicate that the magnetic anisotropy of the FePc-graphene complex can be actively tuned by the Au substrate. Our calculations also show that defects in graphene including single and double vacancies can modify the magnetism of these heterostructures. In particular, the spin state of FePc can be tuned from S = 1 to S = 2 with such defect engineering. Further spin state tunability can be achieved from a hydrogenation process, with the coordination of one extra hydrogen on the Co-top site for CoPc and the pyridinic N site for FePc, respectively, tuning their spin states from S = 1/2 to S = 0 and from S = 1 to S = 2. These findings may prove to be instrumental for rational design of future molecular spintronics devices integrated with two-dimensional materials.

摘要

过渡金属酞菁(TMPc)由于其结构简单和功能灵活,特别适用于自旋电子学处理和数据存储设备。为了实现对 TMPc 基系统中自旋的有效控制,有必要量化分子的结构和化学环境如何影响其自旋中心。在此,我们通过密度泛函理论(DFT)详细研究了 CoPc 或 FePc 吸附在单层石墨烯上形成的垂直堆叠异质结构的电子和自旋电子特性,该结构受到金衬底、石墨烯中的空位以及 TMPc 上额外原子氢配位的影响。结果表明,两种 TMPc 分子都优先选择石墨烯的碳顶位置,而金衬底的存在增强了吸附的稳定性,同时这种增强的吸附不会改变分子的磁性,使其保持与自由状态相同的值。此外,借助 DFT 和基于从头算波函数的计算相结合,我们的结果表明,Au 衬底可以主动调节 FePc-石墨烯复合物的磁各向异性。我们的计算还表明,石墨烯中的缺陷,包括单空位和双空位,可以改变这些异质结构的磁性。特别是,通过这种缺陷工程,可以将 FePc 的自旋态从 S = 1 调至 S = 2。进一步的自旋态可调性可以通过氢化过程实现,其中 CoPc 在 Co 顶位配位一个额外的氢,FePc 在吡啶 N 位配位一个额外的氢,分别将其自旋态从 S = 1/2 调至 S = 0 和从 S = 1 调至 S = 2。这些发现可能有助于合理设计与二维材料集成的未来分子自旋电子器件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验