Suppr超能文献

纳米管辅助微波电穿孔用于单细胞病原体鉴定和抗菌药物敏感性测试。

Nanotube assisted microwave electroporation for single cell pathogen identification and antimicrobial susceptibility testing.

机构信息

Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.

Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA.

出版信息

Nanomedicine. 2019 Apr;17:246-253. doi: 10.1016/j.nano.2019.01.015. Epub 2019 Feb 20.

Abstract

A nanotube assisted microwave electroporation (NAME) technique is demonstrated for delivering molecular biosensors into viable bacteria for multiplex single cell pathogen identification to advance rapid diagnostics in clinical microbiology. Due to the small volume of a bacterial cell (~femtoliter), the intracellular concentration of the target molecule is high, which results in a strong signal for single cell detection without amplification. The NAME procedure can be completed in as little as 30 minutes and can achieve over 90% transformation efficiency. We demonstrate the feasibility of NAME for identifying clinical isolates of bloodborne and uropathogenic pathogens and detecting bacterial pathogens directly from patient's samples. In conjunction with a microfluidic single cell trapping technique, NAME allows single cell pathogen identification and antimicrobial susceptibility testing concurrently. Using this approach, the time for microbiological analysis reduces from days to hours, which will have a significant impact on the clinical management of bacterial infections.

摘要

一种基于纳米管的微波电穿孔(NAME)技术被用于将分子生物传感器递送至活细菌中,以实现多重单细胞病原体识别,从而推进临床微生物学的快速诊断。由于细菌细胞的体积非常小(约为飞升),目标分子的细胞内浓度很高,因此无需扩增即可实现单细胞检测的强信号。NAME 过程可以在 30 分钟内完成,并且可以实现超过 90%的转化效率。我们证明了 NAME 用于鉴定血液和尿路感染病原体的临床分离株以及直接从患者样本中检测细菌病原体的可行性。结合微流控单细胞捕获技术,NAME 允许同时进行单细胞病原体识别和抗菌药物敏感性测试。使用这种方法,微生物分析所需的时间从数天缩短到数小时,这将对细菌感染的临床管理产生重大影响。

相似文献

1
Nanotube assisted microwave electroporation for single cell pathogen identification and antimicrobial susceptibility testing.
Nanomedicine. 2019 Apr;17:246-253. doi: 10.1016/j.nano.2019.01.015. Epub 2019 Feb 20.
3
Single cell antimicrobial susceptibility testing by confined microchannels and electrokinetic loading.
Anal Chem. 2013 Apr 16;85(8):3971-6. doi: 10.1021/ac4004248. Epub 2013 Feb 27.
4
Emerging Analytical Techniques for Rapid Pathogen Identification and Susceptibility Testing.
Annu Rev Anal Chem (Palo Alto Calif). 2019 Jun 12;12(1):41-67. doi: 10.1146/annurev-anchem-061318-115529. Epub 2019 Apr 2.
5
Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels.
Anal Chem. 2010 Feb 1;82(3):1012-9. doi: 10.1021/ac9022764.
6
Progress on the development of rapid methods for antimicrobial susceptibility testing.
J Antimicrob Chemother. 2013 Dec;68(12):2710-7. doi: 10.1093/jac/dkt253. Epub 2013 Jun 30.
8
Emerging technologies for antibiotic susceptibility testing.
Biosens Bioelectron. 2019 Oct 1;142:111552. doi: 10.1016/j.bios.2019.111552. Epub 2019 Aug 9.
9
A novel concentration gradient microfluidic chip for high-throughput antibiotic susceptibility testing of bacteria.
Anal Bioanal Chem. 2021 Feb;413(4):1127-1136. doi: 10.1007/s00216-020-03076-8. Epub 2021 Jan 8.
10
Adaptable microfluidic system for single-cell pathogen classification and antimicrobial susceptibility testing.
Proc Natl Acad Sci U S A. 2019 May 21;116(21):10270-10279. doi: 10.1073/pnas.1819569116. Epub 2019 May 8.

引用本文的文献

1
Single-cell pathogen diagnostics for combating antibiotic resistance.
Nat Rev Methods Primers. 2023;3. doi: 10.1038/s43586-022-00190-y. Epub 2023 Feb 2.
2
Microfluidic technologies for advanced antimicrobial susceptibility testing.
Biomicrofluidics. 2024 Jun 7;18(3):031504. doi: 10.1063/5.0190112. eCollection 2024 May.
4
Microwaves, a potential treatment for bacteria: A review.
Front Microbiol. 2022 Jul 25;13:888266. doi: 10.3389/fmicb.2022.888266. eCollection 2022.
5
Combinatorial nanodroplet platform for screening antibiotic combinations.
Lab Chip. 2022 Feb 1;22(3):621-631. doi: 10.1039/d1lc00865j.
6
A Rapid Single-Cell Antimicrobial Susceptibility Testing Workflow for Bloodstream Infections.
Biosensors (Basel). 2021 Aug 22;11(8):288. doi: 10.3390/bios11080288.
7
Applications of Microwave Energy in Medicine.
Biosensors (Basel). 2021 Mar 26;11(4):96. doi: 10.3390/bios11040096.
8
Current state of the art in rapid diagnostics for antimicrobial resistance.
Lab Chip. 2020 Aug 7;20(15):2607-2625. doi: 10.1039/d0lc00034e. Epub 2020 Jul 9.
9
Innovative and rapid antimicrobial susceptibility testing systems.
Nat Rev Microbiol. 2020 May;18(5):299-311. doi: 10.1038/s41579-020-0327-x. Epub 2020 Feb 13.

本文引用的文献

1
A gapmer aptamer nanobiosensor for real-time monitoring of transcription and translation in single cells.
Biomaterials. 2018 Feb;156:56-64. doi: 10.1016/j.biomaterials.2017.11.026. Epub 2017 Nov 24.
2
Integrated Bacterial Identification and Antimicrobial Susceptibility Testing Using PCR and High-Resolution Melt.
Anal Chem. 2017 Nov 7;89(21):11529-11536. doi: 10.1021/acs.analchem.7b02809. Epub 2017 Oct 26.
4
Integrated Biosensor Assay for Rapid Uropathogen Identification and Phenotypic Antimicrobial Susceptibility Testing.
Eur Urol Focus. 2017 Apr;3(2-3):293-299. doi: 10.1016/j.euf.2015.12.010. Epub 2016 Jan 15.
6
New and developing diagnostic technologies for urinary tract infections.
Nat Rev Urol. 2017 May;14(5):296-310. doi: 10.1038/nrurol.2017.20. Epub 2017 Mar 1.
7
Spatiotemporal dynamics of microRNA during epithelial collective cell migration.
Biomaterials. 2015 Jan;37:156-63. doi: 10.1016/j.biomaterials.2014.10.022. Epub 2014 Oct 23.
8
Ventilator-associated pneumonia: present understanding and ongoing debates.
Intensive Care Med. 2015 Jan;41(1):34-48. doi: 10.1007/s00134-014-3564-5. Epub 2014 Nov 27.
10
Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling.
Nat Mater. 2014 Jul;13(7):748-55. doi: 10.1038/nmat3949. Epub 2014 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验