Suppr超能文献

运用机器学习模型对急诊科患者临床结局进行分诊预测。

Emergency department triage prediction of clinical outcomes using machine learning models.

机构信息

Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, Suite 920, Boston, MA, USA.

Graduate School of Medical Sciences, The University of Fukui, Fukui, Japan.

出版信息

Crit Care. 2019 Feb 22;23(1):64. doi: 10.1186/s13054-019-2351-7.

Abstract

BACKGROUND

Development of emergency department (ED) triage systems that accurately differentiate and prioritize critically ill from stable patients remains challenging. We used machine learning models to predict clinical outcomes, and then compared their performance with that of a conventional approach-the Emergency Severity Index (ESI).

METHODS

Using National Hospital and Ambulatory Medical Care Survey (NHAMCS) ED data, from 2007 through 2015, we identified all adult patients (aged ≥ 18 years). In the randomly sampled training set (70%), using routinely available triage data as predictors (e.g., demographics, triage vital signs, chief complaints, comorbidities), we developed four machine learning models: Lasso regression, random forest, gradient boosted decision tree, and deep neural network. As the reference model, we constructed a logistic regression model using the five-level ESI data. The clinical outcomes were critical care (admission to intensive care unit or in-hospital death) and hospitalization (direct hospital admission or transfer). In the test set (the remaining 30%), we measured the predictive performance, including area under the receiver-operating-characteristics curve (AUC) and net benefit (decision curves) for each model.

RESULTS

Of 135,470 eligible ED visits, 2.1% had critical care outcome and 16.2% had hospitalization outcome. In the critical care outcome prediction, all four machine learning models outperformed the reference model (e.g., AUC, 0.86 [95%CI 0.85-0.87] in the deep neural network vs 0.74 [95%CI 0.72-0.75] in the reference model), with less under-triaged patients in ESI triage levels 3 to 5 (urgent to non-urgent). Likewise, in the hospitalization outcome prediction, all machine learning models outperformed the reference model (e.g., AUC, 0.82 [95%CI 0.82-0.83] in the deep neural network vs 0.69 [95%CI 0.68-0.69] in the reference model) with less over-triages in ESI triage levels 1 to 3 (immediate to urgent). In the decision curve analysis, all machine learning models consistently achieved a greater net benefit-a larger number of appropriate triages considering a trade-off with over-triages-across the range of clinical thresholds.

CONCLUSIONS

Compared to the conventional approach, the machine learning models demonstrated a superior performance to predict critical care and hospitalization outcomes. The application of modern machine learning models may enhance clinicians' triage decision making, thereby achieving better clinical care and optimal resource utilization.

摘要

背景

开发能够准确区分和优先处理危急和稳定患者的急诊分诊系统仍然具有挑战性。我们使用机器学习模型来预测临床结果,然后将其性能与传统方法-紧急严重指数(ESI)进行比较。

方法

我们使用国家医院和门诊医疗保健调查(NHAMCS)ED 数据,从 2007 年到 2015 年,确定了所有成年患者(年龄≥18 岁)。在随机抽样的训练集中(70%),我们使用常规可用的分诊数据作为预测因子(例如,人口统计学,分诊生命体征,主要抱怨,合并症),开发了四种机器学习模型:套索回归,随机森林,梯度增强决策树和深度神经网络。作为参考模型,我们使用五级 ESI 数据构建了逻辑回归模型。临床结果是重症监护(入住重症监护病房或院内死亡)和住院(直接住院或转院)。在测试集中(其余 30%),我们测量了每个模型的预测性能,包括接收者操作特征曲线(AUC)和净收益(决策曲线)下的面积。

结果

在 135470 例合格的 ED 就诊中,有 2.1%的患者有重症监护结果,16.2%的患者有住院结果。在对重症监护结果的预测中,所有四种机器学习模型均优于参考模型(例如,深度神经网络中的 AUC 为 0.86 [95%CI 0.85-0.87],而参考模型中的 AUC 为 0.74 [95%CI 0.72-0.75]),ESI 分诊级别 3 至 5(紧急到非紧急)的低分诊患者人数较少。同样,在对住院结果的预测中,所有机器学习模型均优于参考模型(例如,深度神经网络中的 AUC 为 0.82 [95%CI 0.82-0.83],而参考模型中的 AUC 为 0.69 [95%CI 0.68-0.69]),ESI 分诊级别 1 至 3(立即到紧急)的高分诊患者人数较少。在决策曲线分析中,所有机器学习模型都在整个临床阈值范围内实现了更大的净收益-考虑与高分诊的权衡后,进行了更多的适当分诊。

结论

与传统方法相比,机器学习模型在预测重症监护和住院结果方面表现出更高的性能。现代机器学习模型的应用可以增强临床医生的分诊决策能力,从而提供更好的临床护理和最佳的资源利用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7877/6387562/b8488f1f4f01/13054_2019_2351_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验