Suppr超能文献

光养亚铁氧化细菌引起的含 Fe(III)和有机物的复杂配合物的隐秘循环。

Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria.

机构信息

Geomicrobiology Center for Applied Geoscience, University of Tübingen, Tübingen, Germany.

Geomicrobiology Center for Applied Geoscience, University of Tübingen, Tübingen, Germany

出版信息

Appl Environ Microbiol. 2019 Apr 4;85(8). doi: 10.1128/AEM.02826-18. Print 2019 Apr 15.

Abstract

Fe-organic matter (Fe-OM) complexes are abundant in the environment and, due to their mobility, reactivity, and bioavailability, play a significant role in the biogeochemical Fe cycle. In photic zones of aquatic environments, Fe-OM complexes can potentially be reduced and oxidized, and thus cycled, by light-dependent processes, including abiotic photoreduction of Fe(III)-OM complexes and microbial oxidation of Fe(II)-OM complexes, by anoxygenic phototrophic bacteria. This could lead to a cryptic iron cycle in which continuous oxidation and rereduction of Fe could result in a low and steady-state Fe(II) concentration despite rapid Fe turnover. However, the coupling of these processes has never been demonstrated experimentally. In this study, we grew a model anoxygenic phototrophic Fe(II) oxidizer, SW2, with either citrate, Fe(II)-citrate, or Fe(III)-citrate. We found that strain SW2 was capable of reoxidizing Fe(II)-citrate produced by photochemical reduction of Fe(III)-citrate, which kept the dissolved Fe(II)-citrate concentration at low (<10 μM) and stable concentrations, with a concomitant increase in cell numbers. Cell suspension incubations with strain SW2 showed that it can also oxidize Fe(II)-EDTA, Fe(II)-humic acid, and Fe(II)-fulvic acid complexes. This work demonstrates the potential for active cryptic Fe cycling in the photic zone of anoxic aquatic environments, despite low measurable Fe(II) concentrations which are controlled by the rate of microbial Fe(II) oxidation and the identity of the Fe-OM complexes. Iron cycling, including reduction of Fe(III) and oxidation of Fe(II), involves the formation, transformation, and dissolution of minerals and dissolved iron-organic matter compounds. It has been shown previously that Fe can be cycled so rapidly that no measurable changes in Fe(II) and Fe(III) concentrations occur, leading to a so-called cryptic cycle. Cryptic Fe cycles have been shown to be driven either abiotically by a combination of photochemical reduction of Fe(III)-OM complexes and reoxidation of Fe(II) by O, or microbially by a combination of Fe(III)-reducing and Fe(II)-oxidizing bacteria. Our study demonstrates a new type of light-driven cryptic Fe cycle that is relevant for the photic zone of aquatic habitats involving abiotic photochemical reduction of Fe(III)-OM complexes and microbial phototrophic Fe(II) oxidation. This new type of cryptic Fe cycle has important implications for biogeochemical cycling of iron, carbon, nutrients, and heavy metals and can also influence the composition and activity of microbial communities.

摘要

铁有机物质 (Fe-OM) 复合物在环境中大量存在,由于其迁移性、反应活性和生物可利用性,在生物地球化学铁循环中起着重要作用。在水生环境的光区,Fe-OM 复合物可以通过依赖光的过程被还原和氧化,从而循环利用,包括非生物光还原 Fe(III)-OM 复合物和蓝细菌微生物氧化 Fe(II)-OM 复合物。这可能导致一个隐蔽的铁循环,其中连续的铁氧化和再还原会导致铁的低稳态浓度,尽管铁的周转率很快。然而,这些过程的耦合从未在实验中得到证明。在这项研究中,我们用柠檬酸、Fe(II)-柠檬酸或 Fe(III)-柠檬酸培养了一种模型蓝细菌亚铁氧化菌 SW2。我们发现,SW2 菌株能够重新氧化由 Fe(III)-柠檬酸光化学还原产生的 Fe(II)-柠檬酸,使溶解的 Fe(II)-柠檬酸浓度保持在低(<10 μM)且稳定的浓度,同时细胞数量增加。用 SW2 菌株进行的细胞悬浮培养表明,它还可以氧化 Fe(II)-EDTA、Fe(II)-腐殖酸和 Fe(II)-富里酸复合物。这项工作表明,尽管可测量的 Fe(II)浓度受到微生物 Fe(II)氧化速率和 Fe-OM 复合物的身份的控制,但在缺氧水生环境的光区,仍然存在活跃的隐蔽铁循环的潜力。铁循环包括 Fe(III)的还原和 Fe(II)的氧化,涉及矿物和溶解铁有机物质化合物的形成、转化和溶解。以前已经表明,铁可以如此迅速地循环,以至于 Fe(II)和 Fe(III)浓度没有可测量的变化,导致所谓的隐蔽循环。隐蔽的铁循环要么是由 Fe(III)-OM 复合物的光化学还原和 O 的 Fe(II)再氧化的组合驱动,要么是由 Fe(III)-还原和 Fe(II)-氧化细菌的组合驱动。我们的研究表明了一种新的光驱动隐蔽铁循环,这种循环与涉及 Fe(III)-OM 复合物的非生物光化学还原和微生物光养亚铁氧化的水生栖息地的光区有关。这种新型隐蔽铁循环对铁、碳、营养物质和重金属的生物地球化学循环有重要影响,也会影响微生物群落的组成和活性。

相似文献

1
Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria.
Appl Environ Microbiol. 2019 Apr 4;85(8). doi: 10.1128/AEM.02826-18. Print 2019 Apr 15.
2
Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism.
Appl Environ Microbiol. 1994 Dec;60(12):4517-26. doi: 10.1128/aem.60.12.4517-4526.1994.
3
Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
Appl Environ Microbiol. 2018 Jan 2;84(2). doi: 10.1128/AEM.02013-17. Print 2018 Jan 15.
4
Phototrophic Fe(II) oxidation promotes organic carbon acquisition by Rhodobacter capsulatus SB1003.
Appl Environ Microbiol. 2007 Oct;73(19):6150-8. doi: 10.1128/AEM.02830-06. Epub 2007 Aug 10.
5
Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation.
Appl Environ Microbiol. 2018 Aug 1;84(16). doi: 10.1128/AEM.01166-18. Print 2018 Aug 15.
6
Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments.
FEMS Microbiol Ecol. 2008 Nov;66(2):250-60. doi: 10.1111/j.1574-6941.2008.00592.x. Epub 2008 Sep 22.
8
Growth of microaerophilic Fe(II)-oxidizing bacteria using Fe(II) produced by Fe(III) photoreduction.
Geobiology. 2022 May;20(3):421-434. doi: 10.1111/gbi.12485. Epub 2022 Jan 11.
10
Anaerobic microbial Fe(II) oxidation and Fe(III) reduction in coastal marine sediments controlled by organic carbon content.
Environ Microbiol. 2016 Sep;18(9):3159-74. doi: 10.1111/1462-2920.13387. Epub 2016 Jun 27.

引用本文的文献

1
Cryptic iron cycling influenced by organic carbon availability in a seasonally stratified lake.
FEMS Microbiol Ecol. 2025 Mar 18;101(4). doi: 10.1093/femsec/fiaf029.
2
Iron (hydr)oxide formation in Andosols under extreme climate conditions.
Sci Rep. 2023 Feb 16;13(1):2818. doi: 10.1038/s41598-023-29727-1.
3
PioABC-Dependent Fe(II) Oxidation during Photoheterotrophic Growth on an Oxidized Carbon Substrate Increases Growth Yield.
Appl Environ Microbiol. 2022 Aug 9;88(15):e0097422. doi: 10.1128/aem.00974-22. Epub 2022 Jul 18.
4
Removal of abamectin and conventional pollutants in vertical flow constructed wetlands with Fe-modified biochar.
RSC Adv. 2020 Dec 15;10(72):44171-44182. doi: 10.1039/d0ra08265a. eCollection 2020 Dec 9.
5
Translating New Synthetic Biology Advances for Biosensing Into the Earth and Environmental Sciences.
Front Microbiol. 2021 Feb 4;11:618373. doi: 10.3389/fmicb.2020.618373. eCollection 2020.
6
An evolving view on biogeochemical cycling of iron.
Nat Rev Microbiol. 2021 Jun;19(6):360-374. doi: 10.1038/s41579-020-00502-7. Epub 2021 Feb 1.

本文引用的文献

1
Microbial anaerobic Fe(II) oxidation - Ecology, mechanisms and environmental implications.
Environ Microbiol. 2018 Oct;20(10):3462-3483. doi: 10.1111/1462-2920.14328. Epub 2018 Oct 10.
2
The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients.
Environ Microbiol. 2018 Jul;20(7):2483-2499. doi: 10.1111/1462-2920.14260. Epub 2018 Jul 26.
3
Oxidation of Fe(II)-Organic Matter Complexes in the Presence of the Mixotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacterium Acidovorax sp. BoFeN1.
Environ Sci Technol. 2018 May 15;52(10):5753-5763. doi: 10.1021/acs.est.8b00953. Epub 2018 Apr 27.
4
Formation, Aggregation, and Deposition Dynamics of NOM-Iron Colloids at Anoxic-Oxic Interfaces.
Environ Sci Technol. 2017 Nov 7;51(21):12235-12245. doi: 10.1021/acs.est.7b02356. Epub 2017 Oct 20.
5
Molecular structure of FoxE, the putative iron oxidase of Rhodobacter ferrooxidans SW2.
Biochim Biophys Acta Bioenerg. 2017 Oct;1858(10):847-853. doi: 10.1016/j.bbabio.2017.07.002. Epub 2017 Jul 29.
6
Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic.
Environ Sci Technol. 2017 Jul 5;51(13):7326-7339. doi: 10.1021/acs.est.7b00689. Epub 2017 Jun 23.
7
Cryptic biogeochemical cycles: unravelling hidden redox reactions.
Environ Microbiol. 2017 Mar;19(3):842-846. doi: 10.1111/1462-2920.13687. Epub 2017 Mar 1.
8
Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno.
Environ Microbiol. 2016 Dec;18(12):5288-5302. doi: 10.1111/1462-2920.13587. Epub 2016 Nov 14.
9
Extracellular electron transfer mechanisms between microorganisms and minerals.
Nat Rev Microbiol. 2016 Oct;14(10):651-62. doi: 10.1038/nrmicro.2016.93. Epub 2016 Aug 30.
10
Does As(III) interact with Fe(II), Fe(III) and organic matter through ternary complexes?
J Colloid Interface Sci. 2016 May 15;470:153-161. doi: 10.1016/j.jcis.2016.02.047. Epub 2016 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验