Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
Department of Computer Science, Columbia University, New York, NY, USA.
Mol Syst Biol. 2019 Feb 22;15(2):e8557. doi: 10.15252/msb.20188557.
Common approaches to gene signature discovery in single-cell RNA-sequencing (scRNA-seq) depend upon predefined structures like clusters or pseudo-temporal order, require prior normalization, or do not account for the sparsity of single-cell data. We present single-cell hierarchical Poisson factorization (scHPF), a Bayesian factorization method that adapts hierarchical Poisson factorization (Gopalan , 2015, , 326) for discovery of both continuous and discrete expression patterns from scRNA-seq. scHPF does not require prior normalization and captures statistical properties of single-cell data better than other methods in benchmark datasets. Applied to scRNA-seq of the core and margin of a high-grade glioma, scHPF uncovers marked differences in the abundance of glioma subpopulations across tumor regions and regionally associated expression biases within glioma subpopulations. scHFP revealed an expression signature that was spatially biased toward the glioma-infiltrated margins and associated with inferior survival in glioblastoma.
单细胞 RNA 测序 (scRNA-seq) 中基因特征发现的常见方法依赖于聚类或伪时间顺序等预定义结构,需要先进行归一化,或者不能考虑单细胞数据的稀疏性。我们提出了单细胞层次泊松分解 (scHPF),这是一种贝叶斯分解方法,适用于从 scRNA-seq 中发现连续和离散的表达模式。scHPF 不需要先进行归一化,并且在基准数据集上比其他方法更好地捕获单细胞数据的统计特性。将其应用于高级别神经胶质瘤的核心和边缘的 scRNA-seq 中,scHPF 揭示了肿瘤区域内和胶质瘤亚群内区域相关表达偏倚的胶质瘤亚群丰度的显著差异。scHFP 揭示了一个在空间上偏向于胶质瘤浸润边缘的表达特征,与胶质母细胞瘤的生存预后不良相关。