Suppr超能文献

贝叶斯优化调整的高斯过程回归在海水入侵预测中的应用。

Gaussian Process Regression Tuned by Bayesian Optimization for Seawater Intrusion Prediction.

机构信息

National Technical University of Athens, 15773 Athens, Greece.

Department of Informatics and Computer Engineering, University of West Attica, 12243 Athens, Greece.

出版信息

Comput Intell Neurosci. 2019 Jan 17;2019:2859429. doi: 10.1155/2019/2859429. eCollection 2019.

Abstract

Accurate prediction of the seawater intrusion extent is necessary for many applications, such as groundwater management or protection of coastal aquifers from water quality deterioration. However, most applications require a large number of simulations usually at the expense of prediction accuracy. In this study, the Gaussian process regression method is investigated as a potential surrogate model for the computationally expensive variable density model. Gaussian process regression is a nonparametric kernel-based probabilistic model able to handle complex relations between input and output. In this study, the extent of seawater intrusion is represented by the location of the 0.5 kg/m iso-chlore at the bottom of the aquifer (seawater intrusion toe). The initial position of the toe, expressed as the distance of the specific line from a number of observation points across the coastline, along with the pumping rates are the surrogate model inputs, whereas the final position of the toe constitutes the output variable set. The training sample of the surrogate model consists of 4000 variable density simulations, which differ not only in the pumping rate pattern but also in the initial concentration distribution. The Latin hypercube sampling method is used to obtain the pumping rate patterns. For comparison purposes, a number of widely used regression methods are employed, specifically regression trees and Support Vector Machine regression (linear and nonlinear). A Bayesian optimization method is applied to all the regressors, to maximize their efficiency in the prediction of seawater intrusion. The final results indicate that the Gaussian process regression method, albeit more time consuming, proved to be more efficient in terms of the mean absolute error (MAE), the root mean square error (RMSE), and the coefficient of determination ( ).

摘要

准确预测海水入侵范围对于许多应用非常必要,例如地下水管理或保护沿海含水层免受水质恶化的影响。然而,大多数应用需要大量的模拟,这通常是以牺牲预测精度为代价的。在本研究中,研究了高斯过程回归方法作为计算密集型变密度模型的潜在替代模型。高斯过程回归是一种基于核的非参数概率模型,能够处理输入和输出之间的复杂关系。在本研究中,海水入侵范围由含水层底部 0.5kg/m 等氯线的位置表示(海水入侵趾部)。趾部的初始位置表示为特定线距海岸线附近多个观测点的距离,以及抽水量是替代模型的输入,而趾部的最终位置构成了输出变量集。替代模型的训练样本由 4000 个变密度模拟组成,这些模拟不仅在抽水量模式上有所不同,而且在初始浓度分布上也有所不同。采用拉丁超立方抽样方法获取抽水量模式。为了比较目的,采用了几种广泛使用的回归方法,特别是回归树和支持向量机回归(线性和非线性)。应用贝叶斯优化方法对所有回归器进行优化,以最大程度地提高它们在海水入侵预测中的效率。最终结果表明,尽管高斯过程回归方法需要更多的时间,但在平均绝对误差 (MAE)、均方根误差 (RMSE) 和决定系数 () 方面表现出更高的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46f/6360059/d7f1f48d6cc4/CIN2019-2859429.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验