Suppr超能文献

硅在植物耐胁迫性中的作用:实现可持续种植系统的机遇

Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system.

作者信息

Zargar Sajad Majeed, Mahajan Reetika, Bhat Javaid A, Nazir Muslima, Deshmukh Rupesh

机构信息

1Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, J&K 190025 India.

2School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, J&K 180009 India.

出版信息

3 Biotech. 2019 Mar;9(3):73. doi: 10.1007/s13205-019-1613-z. Epub 2019 Feb 9.

Abstract

Silicon (Si) being considered as a non-essential element for plant growth and development finds its role in providing several benefits to the plant, especially under stress conditions. Thus, Si can be regarded as "multi-talented" quasi-essential element. It is the most abundant element present in the earth's crust after oxygen predominantly as a silicon dioxide (SiO), a form plants cannot utilize. Plants take up Si into their root from the soil in the plant-available forms (PAF) such as silicic acid or mono silicic acid [Si(OH) or HSiO]. Nevertheless, besides being abundantly available, the PAF of Si in the soil is mostly a limiting factor. To improve Si-uptake and derived benefits therein in plants, understanding the molecular basis of Si-uptake and transport within the tissues has great importance. Numerous Si-transporters (influx and efflux) have been identified in both monocot and dicot plants. A difference in the root anatomy of both monocot and dicot plants leads to a difference in the Si-uptake mechanism. In the present review, Si-transporters identified in different species, their evolution and the Si-uptake mechanism have been addressed. Further, the role of Si in biotic and abiotic stress tolerance has been discussed. The information provided here will help to plan the research in a better way to develop more sustainable cropping system by harnessing Si-derived benefits.

摘要

硅(Si)虽被认为是植物生长发育的非必需元素,但它对植物有诸多益处,尤其是在胁迫条件下。因此,硅可被视为“多才多艺”的准必需元素。它是地壳中仅次于氧的最丰富元素,主要以二氧化硅(SiO₂)的形式存在,而植物无法利用这种形式。植物以植物可利用形态(PAF),如硅酸或单硅酸[Si(OH)₄或H₄SiO₄]从土壤中吸收硅进入根部。然而,除了大量存在外,土壤中硅的植物可利用形态大多是一个限制因素。为了提高植物对硅的吸收及其衍生的益处,了解硅在组织内的吸收和运输的分子基础非常重要。在单子叶植物和双子叶植物中都已鉴定出许多硅转运体(流入和流出)。单子叶植物和双子叶植物根部解剖结构的差异导致硅吸收机制的不同。在本综述中,探讨了不同物种中鉴定出的硅转运体、它们的进化以及硅吸收机制。此外,还讨论了硅在生物和非生物胁迫耐受性中的作用。这里提供的信息将有助于更好地规划研究,通过利用硅衍生的益处来开发更可持续的种植系统。

相似文献

1
Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system.
3 Biotech. 2019 Mar;9(3):73. doi: 10.1007/s13205-019-1613-z. Epub 2019 Feb 9.
2
Fascinating impact of silicon and silicon transporters in plants: A review.
Ecotoxicol Environ Saf. 2020 Oct 1;202:110885. doi: 10.1016/j.ecoenv.2020.110885. Epub 2020 Jul 7.
3
4
Versatile role of silicon in cereals: Health benefits, uptake mechanism, and evolution.
Plant Physiol Biochem. 2021 Aug;165:173-186. doi: 10.1016/j.plaphy.2021.03.060. Epub 2021 Apr 28.
5
Silicon, a quasi-essential element: Availability in soil, fertilizer regime, optimum dosage, and uptake in plants.
Plant Physiol Biochem. 2024 Mar;208:108459. doi: 10.1016/j.plaphy.2024.108459. Epub 2024 Feb 22.
6
Multifaceted roles of silicon in mitigating environmental stresses in plants.
Plant Physiol Biochem. 2021 Dec;169:291-310. doi: 10.1016/j.plaphy.2021.11.010. Epub 2021 Nov 13.
7
Silicon transporters in higher plants.
Adv Exp Med Biol. 2010;679:99-109. doi: 10.1007/978-1-4419-6315-4_8.
8
Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture.
Plant Physiol Biochem. 2021 Jun;163:15-25. doi: 10.1016/j.plaphy.2021.03.044. Epub 2021 Mar 26.
9
Effects of silicon on heavy metal uptake at the soil-plant interphase: A review.
Ecotoxicol Environ Saf. 2021 Oct 1;222:112510. doi: 10.1016/j.ecoenv.2021.112510. Epub 2021 Jul 14.
10
Silicon: A valuable soil element for improving plant growth and CO sequestration.
J Adv Res. 2025 May;71:43-54. doi: 10.1016/j.jare.2024.05.027. Epub 2024 May 26.

引用本文的文献

4
Bioprospecting of novel silica solubilizing bacteria as bioinoculants for sustainable silica management.
Front Microbiol. 2025 Jun 9;16:1556406. doi: 10.3389/fmicb.2025.1556406. eCollection 2025.
7
Silicon seed inoculation enhances antioxidants, physiology and yield of hybrid maize under heat stress.
BMC Plant Biol. 2025 Apr 2;25(1):417. doi: 10.1186/s12870-025-06399-9.

本文引用的文献

1
The dynamics of silicon deposition in the sorghum root endodermis.
New Phytol. 2003 Jun;158(3):437-441. doi: 10.1046/j.1469-8137.2003.00764.x.
2
Cycling silicon - the role of accumulation in plants.
New Phytol. 2003 Jun;158(3):419-421. doi: 10.1046/j.1469-8137.2003.00778.x.
3
How Does Silicon Mediate Plant Water Uptake and Loss Under Water Deficiency?
Front Plant Sci. 2018 Mar 5;9:281. doi: 10.3389/fpls.2018.00281. eCollection 2018.
6
Silicon and Plants: Current Knowledge and Technological Perspectives.
Front Plant Sci. 2017 Mar 23;8:411. doi: 10.3389/fpls.2017.00411. eCollection 2017.
7
Identification and characterization of silicon efflux transporters in horsetail (Equisetum arvense).
J Plant Physiol. 2016 Aug 1;200:82-9. doi: 10.1016/j.jplph.2016.06.011. Epub 2016 Jun 18.
8
Defense Responses in Rice Induced by Silicon Amendment against Infestation by the Leaf Folder Cnaphalocrocis medinalis.
PLoS One. 2016 Apr 28;11(4):e0153918. doi: 10.1371/journal.pone.0153918. eCollection 2016.
10
iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells.
Plant Physiol Biochem. 2016 Jul;104:71-80. doi: 10.1016/j.plaphy.2016.03.024. Epub 2016 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验