Suppr超能文献

静脉和动脉以不同的方式构建层次分支模式:自下而上与自上而下。

Veins and Arteries Build Hierarchical Branching Patterns Differently: Bottom-Up versus Top-Down.

机构信息

Dr. K. Red-Horse, Department of Biology, Stanford University, Stanford, 94305, California.

Dr. A. F. Siekmann, Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, 19104, Pennsylvania.

出版信息

Bioessays. 2019 Mar;41(3):e1800198. doi: 10.1002/bies.201800198.

Abstract

A tree-like hierarchical branching structure is present in many biological systems, such as the kidney, lung, mammary gland, and blood vessels. Most of these organs form through branching morphogenesis, where outward growth results in smaller and smaller branches. However, the blood vasculature is unique in that it exists as two trees (arterial and venous) connected at their tips. Obtaining this organization might therefore require unique developmental mechanisms. As reviewed here, recent data indicate that arterial trees often form in reverse order. Accordingly, initial arterial endothelial cell differentiation occurs outside of arterial vessels. These pre-artery cells then build trees by following a migratory path from smaller into larger arteries, a process guided by the forces imparted by blood flow. Thus, in comparison to other branched organs, arteries can obtain their structure through inward growth and coalescence. Here, new information on the underlying mechanisms is discussed, and how defects can lead to pathologies, such as hypoplastic arteries and arteriovenous malformations.

摘要

在许多生物系统中存在树状分支结构,例如肾脏、肺、乳腺和血管。大多数这些器官通过分支形态发生形成,其中向外生长导致越来越小的分支。然而,血管系统是独特的,因为它作为两个树(动脉和静脉)在其尖端连接。因此,获得这种组织可能需要独特的发育机制。正如这里所综述的,最近的数据表明动脉树通常以相反的顺序形成。相应地,最初的动脉内皮细胞分化发生在动脉血管之外。然后,这些前动脉细胞通过从较小的动脉到较大的动脉的迁移路径建立树,这个过程由血流施加的力引导。因此,与其他分支器官相比,动脉可以通过向内生长和合并来获得其结构。在这里,讨论了关于潜在机制的新信息,以及缺陷如何导致病变,如动脉发育不全和动静脉畸形。

相似文献

1
Veins and Arteries Build Hierarchical Branching Patterns Differently: Bottom-Up versus Top-Down.
Bioessays. 2019 Mar;41(3):e1800198. doi: 10.1002/bies.201800198.
2
Making vascular networks in the adult: branching morphogenesis without a roadmap.
Trends Cell Biol. 2003 Mar;13(3):131-6. doi: 10.1016/s0962-8924(03)00022-9.
4
During vertebrate development, arteries exert a morphological control over the venous pattern through physical factors.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051912. doi: 10.1103/PhysRevE.77.051912. Epub 2008 May 15.
5
Notch signaling in vascular morphogenesis.
Curr Opin Hematol. 2004 Jul;11(4):278-83. doi: 10.1097/01.moh.0000130309.44976.ad.
6
Functional arterial and venous fate is determined by graded VEGF signaling and notch status during embryonic stem cell differentiation.
Arterioscler Thromb Vasc Biol. 2007 Mar;27(3):487-93. doi: 10.1161/01.ATV.0000255990.91805.6d. Epub 2006 Dec 21.
8
Flt-1 (vascular endothelial growth factor receptor-1) is essential for the vascular endothelial growth factor-Notch feedback loop during angiogenesis.
Arterioscler Thromb Vasc Biol. 2013 Aug;33(8):1952-9. doi: 10.1161/ATVBAHA.113.301805. Epub 2013 Jun 6.
9
Distinct Notch signaling outputs pattern the developing arterial system.
Development. 2014 Apr;141(7):1544-52. doi: 10.1242/dev.099986. Epub 2014 Mar 5.

引用本文的文献

2
CXCL12 drives natural variation in coronary artery anatomy across diverse populations.
Cell. 2025 Apr 3;188(7):1784-1806.e22. doi: 10.1016/j.cell.2025.02.005. Epub 2025 Mar 5.
4
Protocol for efficient generation of human artery and vein endothelial cells from pluripotent stem cells.
STAR Protoc. 2025 Mar 21;6(1):103494. doi: 10.1016/j.xpro.2024.103494. Epub 2024 Dec 19.
5
Alk1/Endoglin signaling restricts vein cell size increases in response to hemodynamic cues.
Angiogenesis. 2024 Dec 10;28(1):5. doi: 10.1007/s10456-024-09955-3.
6
Dynamic behavior and lineage plasticity of the pulmonary venous endothelium.
Nat Cardiovasc Res. 2024 Dec;3(12):1584-1600. doi: 10.1038/s44161-024-00573-2. Epub 2024 Dec 9.
8
Endothelial cell transitions in zebrafish vascular development.
Dev Growth Differ. 2024 Aug;66(6):357-368. doi: 10.1111/dgd.12938. Epub 2024 Jul 27.
10
Vascular regulation of disseminated tumor cells during metastatic spread.
Biophys Rev (Melville). 2023 Mar 23;4(1):011310. doi: 10.1063/5.0106675. eCollection 2023 Mar.

本文引用的文献

3
Single-cell analysis of early progenitor cells that build coronary arteries.
Nature. 2018 Jul;559(7714):356-362. doi: 10.1038/s41586-018-0288-7. Epub 2018 Jul 4.
4
5
Development and Function of the Tracheal System.
Genetics. 2018 Jun;209(2):367-380. doi: 10.1534/genetics.117.300167.
6
NOTCH regulation of the endothelial cell phenotype.
Curr Opin Hematol. 2018 May;25(3):212-218. doi: 10.1097/MOH.0000000000000425.
7
Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia.
Angiogenesis. 2018 May;21(2):363-380. doi: 10.1007/s10456-018-9602-0. Epub 2018 Feb 19.
8
A molecular atlas of cell types and zonation in the brain vasculature.
Nature. 2018 Feb 22;554(7693):475-480. doi: 10.1038/nature25739. Epub 2018 Feb 14.
9
Endothelial cell biology of Endoglin in hereditary hemorrhagic telangiectasia.
Curr Opin Hematol. 2018 May;25(3):237-244. doi: 10.1097/MOH.0000000000000419.
10
Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification.
Nat Commun. 2017 Dec 15;8(1):2149. doi: 10.1038/s41467-017-01742-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验