Suppr超能文献

基于矩阵补全的无线传感器网络中的低能数据收集。

Low-Energy Data Collection in Wireless Sensor Networks Based on Matrix Completion.

机构信息

College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China.

Department of Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China.

出版信息

Sensors (Basel). 2019 Feb 23;19(4):945. doi: 10.3390/s19040945.

Abstract

Sparse sensing schemes based on matrix completion for data collection have been proposed to reduce the power consumption of data-sensing and transmission in wireless sensor networks (WSNs). While extensive efforts have been made to improve the recovery accuracy from the sparse samples, it is usually at the cost of running time. Moreover, most data-collection methods are difficult to implement with low sampling ratio because of the communication limit. In this paper, we design a novel data-collection method including a Rotating Random Sparse Sampling method and a Fast Singular Value Thresholding algorithm. With the proposed method, nodes are in the sleep mode most of the time, and the sampling ratio varies over time slots during the sampling process. From the samples, a corresponding algorithm with Nesterov technique is given to recover the original data accurately and fast. With two real-world data sets in WSNs, simulations verify that our scheme outperforms other schemes in terms of energy consumption, reconstruction accuracy, and rate. Moreover, the proposed sampling method enhances the recovery algorithm and prolongs the lifetime of WSNs.

摘要

基于矩阵补全的数据采集稀疏感知方案已被提出,以降低无线传感器网络(WSN)中数据感知和传输的功耗。虽然已经做出了广泛的努力来提高从稀疏样本中恢复的准确性,但这通常是以运行时间为代价的。此外,由于通信限制,大多数数据采集方法很难在低采样率下实现。在本文中,我们设计了一种新的数据采集方法,包括旋转随机稀疏采样方法和快速奇异值阈值算法。在提出的方法中,节点大部分时间处于休眠模式,并且在采样过程中,采样比随时隙而变化。从样本中,给出了一个带有 Nesterov 技术的相应算法,以准确快速地恢复原始数据。通过在 WSN 中使用两个真实数据集进行仿真,验证了我们的方案在能量消耗、重建准确性和速率方面优于其他方案。此外,所提出的采样方法增强了恢复算法并延长了 WSN 的寿命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d08/6412723/3aa4237c79cb/sensors-19-00945-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验