Suppr超能文献

使用手持设备解决行人单目视觉里程计尺度因子问题的自适应步长估计方法。

Solving Monocular Visual Odometry Scale Factor with Adaptive Step Length Estimates for Pedestrians Using Handheld Devices.

机构信息

Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR) AME GEOLOC, 44340 Bouguenais, France.

Centrale Nantes, 44300 Nantes, France.

出版信息

Sensors (Basel). 2019 Feb 23;19(4):953. doi: 10.3390/s19040953.

Abstract

The urban environments represent challenging areas for handheld device pose estimation (i.e., 3D position and 3D orientation) in large displacements. It is even more challenging with low-cost sensors and computational resources that are available in pedestrian mobile devices (i.e., monocular camera and Inertial Measurement Unit). To address these challenges, we propose a continuous pose estimation based on monocular Visual Odometry. To solve the scale ambiguity and suppress the scale drift, an adaptive pedestrian step lengths estimation is used for the displacements on the horizontal plane. To complete the estimation, a handheld equipment height model, with respect to the Digital Terrain Model contained in Geographical Information Systems, is used for the displacement on the vertical axis. In addition, an accurate pose estimation based on the recognition of known objects is punctually used to correct the pose estimate and reset the monocular Visual Odometry. To validate the benefit of our framework, experimental data have been collected on a 0.7 km pedestrian path in an urban environment for various people. Thus, the proposed solution allows to achieve a positioning error of 1.6⁻7.5% of the walked distance, and confirms the benefit of the use of an adaptive step length compared to the use of a fixed-step length.

摘要

城市环境代表了手持设备在大位移下进行姿态估计(即 3D 位置和 3D 方向)的具有挑战性的领域。在行人移动设备(即单目相机和惯性测量单元)中,可用的低成本传感器和计算资源使得这一挑战更加艰巨。为了解决这些挑战,我们提出了一种基于单目视觉里程计的连续姿态估计方法。为了解决尺度模糊性和抑制尺度漂移问题,我们针对水平面上的位移,使用自适应行人步长估计方法。为了完成估计,针对垂直轴上的位移,使用相对于地理信息系统中包含的数字地形模型的手持设备高度模型。此外,基于对已知物体的识别,使用精确的姿态估计来校正姿态估计并重置单目视觉里程计。为了验证我们框架的优势,在城市环境中的 0.7 公里行人路径上,针对不同的人收集了实验数据。因此,所提出的解决方案可以实现行走距离的 1.6%至 7.5%的定位误差,并且证实了与使用固定步长相比,使用自适应步长的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e20/6412422/8e970c9f707f/sensors-19-00953-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验