Suppr超能文献

利用医疗保险行政索赔数据识别易发生药物不良事件和需住院治疗的高风险人群,以改善医疗质量。

Use of Medicare Administrative Claims to Identify a Population at High Risk for Adverse Drug Events and Hospital Use for Quality Improvement.

机构信息

1 Telligen, Des Moines, Iowa.

2 Centers for Medicare & Medicaid Services, Baltimore, Maryland.

出版信息

J Manag Care Spec Pharm. 2019 Mar;25(3):402-410. doi: 10.18553/jmcp.2019.25.3.402.

Abstract

BACKGROUND

A system using administrative claims to monitor medication use patterns and associated adverse events is not currently available. Establishment of a standardized method to identify Medicare beneficiaries at high risk for adverse events, by assessing Medicare Part D medication claim patterns and associated outcomes, including outpatient adverse drug events (ADEs) and hospital use, enhances prevention efforts and monitoring for quality improvement efforts.

OBJECTIVES

To (a) demonstrate that Medicare claims data can be used to identify a population of beneficiaries at high risk for adverse events for quality improvement and (b) define trends associated with adverse health outcomes in identified high-risk beneficiaries for quality improvement opportunities.

METHODS

We used Medicare fee-for-service Part D claims data to identify a population at high risk for adverse events by evaluating medication use patterns. This population was taking at least 3 medications, 1 of which was an anticoagulant, an opioid, or an antidiabetic agent. Next, we used associated Part A claims to calculate rates of outpatient ADEs, looking for specific ICD-9-CM or ICD-10-CM codes in the principal diagnosis code position. Rates of hospital use (inpatient hospitalization, observation stays, emergency department visits, and 30-day rehospitalizations) were also evaluated for the identified high-risk population. The data were then shared for targeted quality improvement.

RESULTS

We identified 8,178,753 beneficiaries at high risk for adverse events, or 20.7% of the total eligible fee-for-service population (time frame of October 2016-September 2017). The overall rate of outpatient ADEs for beneficiaries at high risk was 46.28 per 1,000, with anticoagulant users demonstrating the highest rate of ADEs (68.52/1,000), followed by opioid users (42.11/1,000) and diabetic medication users (20.72/1,000). As expected, the primary setting for beneficiaries at high risk to seek care for outpatient ADEs was the emergency department, followed by inpatient hospitalizations and observation stays.

CONCLUSIONS

Medicare claims are an accessible source of data, which can be used to establish for quality improvement a population at high risk for ADEs and increased hospital use. Using medication use patterns to attribute risk and associated outcomes, such as outpatient ADEs and hospital use, is a simple process that can be readily implemented. The described method has the potential to be further validated and used as a foundation to monitor population-based quality improvement efforts for medication safety.

DISCLOSURES

This work was performed under contract HHSM-500-2014-QINNCC, Modification No. 000004, funded by Centers for Medicare & Medicaid Services (CMS), an agency of the U.S. Department of Health and Human Services. CMS did not have a role in the analysis. At the time of this analysis, Digmann, Peppercorn, Zhang, Irby, and Brock were employees of Telligen, which was awarded the National Coordinating Center-Quality Improvement Organization contract from CMS, which supported the work. Ryan was an employee at Qsource, which was awarded the Quality Innovation Network-Quality Improvement Organization contract from CMS, which supported the work. Thomas was employed by CMS. The content is solely the responsibility of the authors and does not necessarily represent the official views or policies of the CMS. This work is posted on the QIOprogram.org website, as recommended in the Common Rule ( https://www.hhs.gov/ohrp/regulations-and-policy/regulations/common-rule/index.html ).

摘要

背景

目前尚无用于监测药物使用模式和相关不良事件的系统。通过评估医疗保险部分 D 药物索赔模式和相关结果(包括门诊药物不良事件 (ADE) 和医院使用),建立一种标准化方法来识别 Medicare 受益人中具有发生不良事件高风险的人群,这可以增强预防工作并促进质量改进工作的监测。

目的

(a) 证明医疗保险索赔数据可用于识别具有不良事件高风险的受益人群体,以进行质量改进,(b) 定义与确定的高风险受益人群体中与不良健康结果相关的趋势,以确定质量改进机会。

方法

我们使用 Medicare 收费服务部分 D 索赔数据通过评估药物使用模式来识别具有不良事件高风险的人群。该人群至少服用三种药物,其中一种是抗凝剂、阿片类药物或抗糖尿病药物。接下来,我们使用相关的部分 A 索赔来计算门诊 ADE 的发生率,在主要诊断代码位置寻找特定的 ICD-9-CM 或 ICD-10-CM 代码。还评估了确定的高风险人群的医院使用情况(住院、观察住院、急诊就诊和 30 天再住院)。然后共享数据以进行有针对性的质量改进。

结果

我们确定了 8178753 名具有发生不良事件高风险的受益人,占总合格收费服务人群的 20.7%(2016 年 10 月至 2017 年 9 月的时间段)。高风险受益人群的门诊 ADE 总发生率为每 1000 人 46.28 例,抗凝剂使用者的 ADE 发生率最高(每 1000 人 68.52 例),其次是阿片类药物使用者(每 1000 人 42.11 例)和糖尿病药物使用者(每 1000 人 20.72 例)。如预期的那样,高风险受益人群寻求门诊 ADE 治疗的主要场所是急诊室,其次是住院和观察住院。

结论

医疗保险索赔是一种可访问的数据来源,可用于为不良事件和增加的医院使用高风险人群建立质量改进。使用药物使用模式来确定风险和相关结果,如门诊 ADE 和医院使用,是一个简单的过程,可以轻松实施。所描述的方法具有进一步验证和用作监测药物安全性的基于人群的质量改进工作的基础的潜力。

披露

这项工作是根据与医疗保险和医疗补助服务中心(CMS)签订的 HHSM-500-2014-QINNCC 合同(修改号 000004)进行的,CMS 是美国卫生与公众服务部的一个机构。CMS 在分析过程中没有参与。在进行此分析时,Digmann、Peppercorn、Zhang、Irby 和 Brock 是 Telligen 的员工,Telligen 获得了 CMS 授予的国家协调中心-质量改进组织合同,该合同支持了这项工作。Ryan 是 Qsource 的员工,Qsource 获得了 CMS 授予的质量创新网络-质量改进组织合同,该合同支持了这项工作。Thomas 受雇于 CMS。内容完全由作者负责,并不一定代表 CMS 的官方观点或政策。本作品发布在 QIOprogram.org 网站上,正如《通用规则》(https://www.hhs.gov/ohrp/regulations-and-policy/regulations/common-rule/index.html)所建议的那样。

相似文献

4
US Emergency Department Visits for Outpatient Adverse Drug Events, 2013-2014.
JAMA. 2016 Nov 22;316(20):2115-2125. doi: 10.1001/jama.2016.16201.
5
Identification of Emergency Department Visits in Medicare Administrative Claims: Approaches and Implications.
Acad Emerg Med. 2017 Apr;24(4):422-431. doi: 10.1111/acem.13140. Epub 2017 Mar 17.
8
Evaluating whether changes in utilization of hospital outpatient services contributed to lower Medicare readmission rate.
Medicare Medicaid Res Rev. 2014 Apr 23;4(1). doi: 10.5600/mmrr2014-004-01-b03. eCollection 2014.

本文引用的文献

2
Medication days' supply, adherence, wastage, and cost among chronic patients in Medicaid.
Medicare Medicaid Res Rev. 2012 Sep 19;2(3). doi: 10.5600/mmrr.002.03.a04. eCollection 2012.
3
Adverse drug events as a cause of hospitalization in older adults.
Drug Saf. 2012 Jan;35 Suppl 1:29-45. doi: 10.1007/BF03319101.
4
Emergency hospitalizations for adverse drug events in older Americans.
N Engl J Med. 2011 Nov 24;365(21):2002-12. doi: 10.1056/NEJMsa1103053.
6
Emergency department visits among recipients of chronic opioid therapy.
Arch Intern Med. 2010 Sep 13;170(16):1425-32. doi: 10.1001/archinternmed.2010.273.
7
Adverse drug events in the outpatient setting: an 11-year national analysis.
Pharmacoepidemiol Drug Saf. 2010 Sep;19(9):901-10. doi: 10.1002/pds.1984.
8
Diagnostic E-codes for commonly used, narrow therapeutic index medications poorly predict adverse drug events.
J Clin Epidemiol. 2008 Jun;61(6):561-71. doi: 10.1016/j.jclinepi.2007.08.003. Epub 2008 Feb 14.
9
Validation of ICD-9-CM coding algorithm for improved identification of hypoglycemia visits.
BMC Endocr Disord. 2008 Apr 1;8:4. doi: 10.1186/1472-6823-8-4.
10
Outpatient drug safety: new steps in an old direction.
Pharmacoepidemiol Drug Saf. 2007 Feb;16(2):160-5. doi: 10.1002/pds.1242.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验