Suppr超能文献

染色质因子 HNI9 和 ELONGATED HYPOCOTYL5 在高氮供应下维持 ROS 稳态。

The Chromatin Factor HNI9 and ELONGATED HYPOCOTYL5 Maintain ROS Homeostasis under High Nitrogen Provision.

机构信息

Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, SupAgro, University of Montpellier, Montpellier, France.

Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, SupAgro, University of Montpellier, Montpellier, France

出版信息

Plant Physiol. 2019 May;180(1):582-592. doi: 10.1104/pp.18.01473. Epub 2019 Mar 1.

Abstract

Reactive oxygen species (ROS) can accumulate in cells at excessive levels, leading to unbalanced redox states and to potential oxidative stress, which can have damaging effects on the molecular components of plant cells. Several environmental conditions have been described as causing an elevation of ROS production in plants. Consequently, activation of detoxification responses is necessary to maintain ROS homeostasis at physiological levels. Misregulation of detoxification systems during oxidative stress can ultimately cause growth retardation and developmental defects. Here, we demonstrate that Arabidopsis () plants grown in a high nitrogen (N) environment express a set of genes involved in detoxification of ROS that maintain ROS at physiological levels. We show that the chromatin factor HIGH NITROGEN INSENSITIVE9 (HNI9) is an important mediator of this response and is required for the expression of detoxification genes. Mutation in HNI9 leads to elevated ROS levels and ROS-dependent phenotypic defects under high but not low N provision. In addition, we identify ELONGATED HYPOCOTYL5 as a major transcription factor required for activation of the detoxification program under high N. Our results demonstrate the requirement of a balance between N metabolism and ROS production, and our work establishes major regulators required to control ROS homeostasis under conditions of excess N.

摘要

活性氧 (ROS) 在细胞中会积累到过量水平,导致氧化还原状态失衡和潜在的氧化应激,从而对植物细胞的分子成分造成损害。已经描述了几种环境条件会导致植物中 ROS 产生升高。因此,必须激活解毒反应以维持生理水平的 ROS 稳态。在氧化应激期间解毒系统的失调最终可能导致生长迟缓和发育缺陷。在这里,我们证明在高氮 (N) 环境中生长的拟南芥 () 植物表达了一组参与 ROS 解毒的基因,这些基因维持 ROS 处于生理水平。我们表明,染色质因子 HIGH NITROGEN INSENSITIVE9 (HNI9) 是该反应的重要介质,是解毒基因表达所必需的。HNI9 突变导致 ROS 水平升高和 ROS 依赖性表型缺陷在高但不是低 N 供应下。此外,我们确定 ELONGATED HYPOCOTYL5 作为在高 N 下激活解毒程序所必需的主要转录因子。我们的结果表明需要在氮代谢和 ROS 产生之间取得平衡,我们的工作确定了在过量 N 条件下控制 ROS 稳态所需的主要调节剂。

相似文献

1
The Chromatin Factor HNI9 and ELONGATED HYPOCOTYL5 Maintain ROS Homeostasis under High Nitrogen Provision.
Plant Physiol. 2019 May;180(1):582-592. doi: 10.1104/pp.18.01473. Epub 2019 Mar 1.
2
Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination.
Plant Mol Biol. 2017 May;94(1-2):197-213. doi: 10.1007/s11103-017-0603-y. Epub 2017 Apr 8.
3
Coordination between bZIP28 and HSFA2 in the regulation of heat response signals in Arabidopsis.
Plant Signal Behav. 2017 Nov 2;12(11):e1376159. doi: 10.1080/15592324.2017.1376159. Epub 2017 Sep 5.
5
B-Box Containing Proteins BBX30 and BBX31, Acting Downstream of HY5, Negatively Regulate Photomorphogenesis in .
Plant Physiol. 2019 May;180(1):497-508. doi: 10.1104/pp.18.01244. Epub 2019 Feb 14.
7
CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses.
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):17129-34. doi: 10.1073/pnas.1209148109. Epub 2012 Oct 1.
8
The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation.
Plant Cell Environ. 2010 Jan;33(1):88-103. doi: 10.1111/j.1365-3040.2009.02061.x. Epub 2009 Nov 4.
9
Arabidopsis clade IV TGA transcription factors, TGA10 and TGA9, are involved in ROS-mediated responses to bacterial PAMP flg22.
Plant Sci. 2016 Nov;252:12-21. doi: 10.1016/j.plantsci.2016.06.019. Epub 2016 Jun 28.
10
Cross-Species Network Analysis Uncovers Conserved Nitrogen-Regulated Network Modules in Rice.
Plant Physiol. 2015 Aug;168(4):1830-43. doi: 10.1104/pp.114.255877. Epub 2015 Jun 4.

引用本文的文献

1
A TaSnRK1α-TaCAT2 model mediates resistance to Fusarium crown rot by scavenging ROS in common wheat.
Nat Commun. 2025 Mar 15;16(1):2549. doi: 10.1038/s41467-025-57936-x.
2
Ca-dependent HO response in roots and leaves of barley - a transcriptomic investigation.
BMC Plant Biol. 2025 Feb 20;25(1):232. doi: 10.1186/s12870-025-06248-9.
5
Epigenetic Regulation of Nitrogen Signaling and Adaptation in Plants.
Plants (Basel). 2023 Jul 21;12(14):2725. doi: 10.3390/plants12142725.
6
Exploring the metabolic and physiological roles of in by gene editing.
Front Plant Sci. 2023 Mar 31;14:1124959. doi: 10.3389/fpls.2023.1124959. eCollection 2023.
9
Glucose-6-Phosphate Dehydrogenases: The Hidden Players of Plant Physiology.
Int J Mol Sci. 2022 Dec 17;23(24):16128. doi: 10.3390/ijms232416128.

本文引用的文献

1
CC-type glutaredoxins mediate plant response and signaling under nitrate starvation in Arabidopsis.
BMC Plant Biol. 2018 Nov 13;18(1):281. doi: 10.1186/s12870-018-1512-1.
2
3
ROS-related redox regulation and signaling in plants.
Semin Cell Dev Biol. 2018 Aug;80:3-12. doi: 10.1016/j.semcdb.2017.07.013. Epub 2017 Jul 18.
5
Reactive oxygen species, abiotic stress and stress combination.
Plant J. 2017 Jun;90(5):856-867. doi: 10.1111/tpj.13299. Epub 2016 Nov 1.
6
The Multifaceted Roles of HY5 in Plant Growth and Development.
Mol Plant. 2016 Oct 10;9(10):1353-1365. doi: 10.1016/j.molp.2016.07.002. Epub 2016 Jul 17.
8
The ROS Wheel: Refining ROS Transcriptional Footprints.
Plant Physiol. 2016 Jul;171(3):1720-33. doi: 10.1104/pp.16.00420. Epub 2016 May 31.
9
Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape.
Cell. 2016 May 19;165(5):1280-1292. doi: 10.1016/j.cell.2016.04.038.
10
Redox regulation in shoot growth, SAM maintenance and flowering.
Curr Opin Plant Biol. 2016 Feb;29:121-8. doi: 10.1016/j.pbi.2015.11.009. Epub 2016 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验