Suppr超能文献

将 RNA 测序扩展为罕见孟德尔疾病诊断工具的界限。

Expanding the Boundaries of RNA Sequencing as a Diagnostic Tool for Rare Mendelian Disease.

机构信息

Division of Neurology, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Program in Genetics and Genome Biology, Research Institute, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.

Centre for Computational Medicine, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.

出版信息

Am J Hum Genet. 2019 Mar 7;104(3):466-483. doi: 10.1016/j.ajhg.2019.01.012. Epub 2019 Feb 28.

Abstract

Gene-panel and whole-exome analyses are now standard methodologies for mutation detection in Mendelian disease. However, the diagnostic yield achieved is at best 50%, leaving the genetic basis for disease unsolved in many individuals. New approaches are thus needed to narrow the diagnostic gap. Whole-genome sequencing is one potential strategy, but it currently has variant-interpretation challenges, particularly for non-coding changes. In this study we focus on transcriptome analysis, specifically total RNA sequencing (RNA-seq), by using monogenetic neuromuscular disorders as proof of principle. We examined a cohort of 25 exome and/or panel "negative" cases and provided genetic resolution in 36% (9/25). Causative mutations were identified in coding and non-coding exons, as well as in intronic regions, and the mutational pathomechanisms included transcriptional repression, exon skipping, and intron inclusion. We address a key barrier of transcriptome-based diagnostics: the need for source material with disease-representative expression patterns. We establish that blood-based RNA-seq is not adequate for neuromuscular diagnostics, whereas myotubes generated by transdifferentiation from an individual's fibroblasts accurately reflect the muscle transcriptome and faithfully reveal disease-causing mutations. Our work confirms that RNA-seq can greatly improve diagnostic yield in genetically unresolved cases of Mendelian disease, defines strengths and challenges of the technology, and demonstrates the suitability of cell models for RNA-based diagnostics. Our data set the stage for development of RNA-seq as a powerful clinical diagnostic tool that can be applied to the large population of individuals with undiagnosed, rare diseases and provide a framework for establishing minimally invasive strategies for doing so.

摘要

基因panel 和全外显子组分析现在是孟德尔疾病突变检测的标准方法。然而,其诊断率最高也只有 50%,这使得许多个体的疾病遗传基础仍未得到解决。因此,需要新的方法来缩小诊断差距。全基因组测序是一种潜在的策略,但它目前存在变异解释的挑战,特别是对于非编码变化。在这项研究中,我们专注于转录组分析,特别是总 RNA 测序(RNA-seq),并以单基因神经肌肉疾病作为原理证明。我们检查了一组 25 个外显子和/或 panel“阴性”病例,并在 36%(9/25)的病例中提供了遗传解析。在编码和非编码外显子以及内含子区域中鉴定出了致病突变,突变的病理机制包括转录抑制、外显子跳跃和内含子包含。我们解决了基于转录组诊断的一个关键障碍:需要具有疾病代表性表达模式的源材料。我们证实,基于血液的 RNA-seq 不适用于神经肌肉诊断,而通过个体成纤维细胞的转分化生成的肌管能够准确反映肌肉转录组,并忠实地揭示致病突变。我们的工作证实,RNA-seq 可以大大提高孟德尔疾病中遗传未解决病例的诊断率,定义了该技术的优势和挑战,并证明了细胞模型在基于 RNA 的诊断中的适用性。我们的数据为 RNA-seq 作为一种强大的临床诊断工具的发展奠定了基础,该工具可应用于大量患有未确诊的罕见疾病的个体,并为建立微创策略提供了框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c32/6407525/816c60b88707/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验