Fernandez-Göbel Tadeo F, Deanna Rocío, Muñoz Nacira B, Robert Germán, Asurmendi Sebastian, Lascano Ramiro
Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina.
Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina.
Front Plant Sci. 2019 Feb 15;10:141. doi: 10.3389/fpls.2019.00141. eCollection 2019.
The symbiotic relationship between legumes and nitrogen-fixing rhizobia induces local and systemic responses, which ultimately lead to nodule formation. The autoregulation of nodulation (AON) is a systemic mechanism related to innate immunity that controls nodule development and involves different components ranging from hormones, peptides, receptors to small RNAs. Here, we characterized a rapid systemic redox changes induced during soybean- symbiotic interaction. A transient peak of reactive oxygen species (ROS) generation was found in soybean leaves after 30 min of root inoculation with . The ROS response was accompanied by changes in the redox state of glutathione and by activation of antioxidant enzymes. Moreover, the ROS peak and antioxidant enzyme activation were abolished in leaves by the addition, in either root or leaf, of DPI, an NADPH oxidase inhibitor. Likewise, these systemic redox changes primed the plant increasing its tolerance to photooxidative stress. With the use of non-nodulating -mutant and hyper-nodulating -mutant soybean plants, we subsequently studied the systemic redox changes. The mutant lacked the systemic redox changes after inoculation, whereas the mutant showed a similar redox systemic signaling than the plants. However, neither nor mutant exhibited tolerance to photooxidative stress condition. Altogether, these results demonstrated that (i) the early redox systemic signaling during symbiotic interaction depends on a Nod factor receptor, and that (ii) the induced tolerance response depends on the AON mechanisms.
豆科植物与固氮根瘤菌之间的共生关系会引发局部和系统反应,最终导致根瘤形成。结瘤自调控(AON)是一种与先天免疫相关的系统机制,它控制根瘤发育,涉及从激素、肽、受体到小RNA等不同成分。在此,我们对大豆共生相互作用过程中诱导的快速系统氧化还原变化进行了表征。在用[未提及的接种物]对根部接种30分钟后,大豆叶片中发现了活性氧(ROS)生成的短暂峰值。ROS反应伴随着谷胱甘肽氧化还原状态的变化以及抗氧化酶的激活。此外,通过在根部或叶片中添加NADPH氧化酶抑制剂DPI,叶片中的ROS峰值和抗氧化酶激活被消除。同样,这些系统氧化还原变化使植物对光氧化胁迫的耐受性增强。通过使用非结瘤[未提及的突变体]和超结瘤[未提及的突变体]大豆植株,我们随后研究了系统氧化还原变化。该突变体在接种后缺乏系统氧化还原变化,而该突变体显示出与[未提及的植株]相似的氧化还原系统信号。然而,[未提及的突变体]和突变体均未表现出对光氧化胁迫条件的耐受性。总之,这些结果表明:(i)共生相互作用过程中的早期氧化还原系统信号传导依赖于结瘤因子受体,并且(ii)诱导的耐受性反应依赖于AON机制。