Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Seville, Spain.
Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Seville, Spain.
Sci Total Environ. 2019 Jun 1;667:578-585. doi: 10.1016/j.scitotenv.2019.02.421. Epub 2019 Feb 28.
The interest of using biochar, the solid byproduct from organic waste pyrolysis, as soil conditioner is significantly increasing. Nevertheless, persistent organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), are formed during pyrolysis due to the incomplete combustion of organic matter. Consequently, these pollutants may enter the environment when biochar is incorporated into soil and cause adverse ecological effects. In this study, we examined the content of the 16 United States Environmental Protection Agency (USEPA) PAHs in biochars produced from rice husk, wood, wheat and sewage sludge residues using three different pyrolytic reactors and temperatures (400, 500 and 600 °C). The total concentration of PAHs (∑PAH) ranged from 799 to 6364 μg kg, being naphthalene, phenanthrene and anthracene the most abundant PAHs in all the biochars. The maximum amount of PAHs was observed for the rice husk biochar produced in the batch reactor at 400 °C, which decreased with increasing temperature. The ∑PAH value of the wood biochar produced via traditional kilns doubled compared with the wood biochar produced using the other pyrolytic reactors (5330 μg kg in Kiln; 2737 μg kg in batch and 1942 μg kg in the rotary reactor). Looking for a more reliable risk assessment of the potential exposure of PAHs in biochar, the total toxic equivalent concentrations (TTEC) of the 14 produced biochars were calculated. When comparing the same feedstock and temperature, TTEC values indicated that the rotary reactor produced the safest biochars. In contrast, the biochars produced using the batch reactor at 400 and 500 °C have the greatest hazard potential. Our results provide valuable information on the potential risk of biochar application for human and animal health, as well as for the environment due to PAHs contamination.
利用生物炭(有机废物热解产生的固体副产物)作为土壤改良剂的兴趣显著增加。然而,由于有机物不完全燃烧,热解过程中会形成持久性有机污染物,如多环芳烃(PAHs)。因此,当生物炭被掺入土壤中时,这些污染物可能会进入环境并造成不良的生态影响。在这项研究中,我们使用三种不同的热解反应器和温度(400、500 和 600°C)研究了稻壳、木材、小麦和污水污泥残渣生产的生物炭中 16 种美国环保署(USEPA)PAHs 的含量。PAHs 的总浓度(∑PAH)范围为 799 至 6364μg/kg,所有生物炭中萘、菲和蒽是最丰富的 PAHs。在 400°C 的批量反应器中生产的稻壳生物炭中观察到 PAHs 的最大量,随着温度的升高而减少。通过传统窑炉生产的木材生物炭的∑PAH 值是使用其他热解反应器生产的木材生物炭的两倍(窑炉中为 5330μg/kg,批量反应器中为 2737μg/kg,旋转反应器中为 1942μg/kg)。为了更可靠地评估生物炭中 PAHs 潜在暴露的风险,我们计算了 14 种生物炭的总毒性等效浓度(TTEC)。当比较相同的原料和温度时,TTEC 值表明旋转反应器生产的生物炭最安全。相比之下,在 400 和 500°C 下使用批量反应器生产的生物炭具有最大的危害潜力。我们的研究结果为生物炭应用对人类和动物健康以及环境中 PAHs 污染的潜在风险提供了有价值的信息。