Suppr超能文献

使用界值比较内部和外部有效性的可交换性假设的强度。

Using Bounds to Compare the Strength of Exchangeability Assumptions for Internal and External Validity.

机构信息

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

出版信息

Am J Epidemiol. 2019 Jul 1;188(7):1355-1360. doi: 10.1093/aje/kwz060.

Abstract

In the absence of strong assumptions (e.g., exchangeability), only bounds for causal effects can be identified. Here we describe bounds for the risk difference for an effect of a binary exposure on a binary outcome in 4 common study settings: observational studies and randomized studies, each with and without simple random selection from the target population. Through these scenarios, we introduce randomizations for selection and treatment, and the widths of the bounds are narrowed from 2 (the width of the range of the risk difference) to 0 (point identification). We then assess the strength of the assumptions of exchangeability for internal and external validity by comparing their contributions to the widths of the bounds in the setting of an observational study without random selection from the target population. We find that when less than two-thirds of the target population is selected into the study, the assumption of exchangeability for external validity of the risk difference is stronger than that for internal validity. The relative strength of these assumptions should be considered when designing, analyzing, and interpreting observational studies and will aid in determining the best methods for estimating the causal effects of interest.

摘要

在没有严格假设(例如可交换性)的情况下,只能确定因果效应的界。在这里,我们描述了在 4 种常见的研究设置中,二元暴露对二元结局的效应的风险差的界:观察性研究和随机研究,每种研究都有且没有简单随机选择目标人群。通过这些场景,我们引入了选择和治疗的随机化,并且界的宽度从 2(风险差的范围宽度)缩小到 0(点识别)。然后,我们通过比较它们对无目标人群随机选择的观察性研究中界宽度的贡献,评估了内部和外部有效性的可交换性假设的强度。我们发现,当不到三分之二的目标人群被纳入研究时,风险差的外部有效性的可交换性假设比内部有效性的假设更强。在设计、分析和解释观察性研究时,应考虑这些假设的相对强度,并有助于确定估计感兴趣的因果效应的最佳方法。

相似文献

1
Using Bounds to Compare the Strength of Exchangeability Assumptions for Internal and External Validity.
Am J Epidemiol. 2019 Jul 1;188(7):1355-1360. doi: 10.1093/aje/kwz060.
2
Bridging observational studies and randomized experiments by embedding the former in the latter.
Stat Methods Med Res. 2019 Jul;28(7):1958-1978. doi: 10.1177/0962280217740609. Epub 2017 Nov 29.
3
Sharp bounds on the relative treatment effect for ordinal outcomes.
Biometrics. 2020 Jun;76(2):664-669. doi: 10.1111/biom.13148. Epub 2019 Nov 19.
5
Formulating and Answering High-Impact Causal Questions in Physiologic Childbirth Science: Concepts and Assumptions.
J Midwifery Womens Health. 2018 Nov;63(6):721-730. doi: 10.1111/jmwh.12868. Epub 2018 Jun 8.
6
A Bayesian approach to estimating causal vaccine effects on binary post-infection outcomes.
Stat Med. 2016 Jan 15;35(1):53-64. doi: 10.1002/sim.6573. Epub 2015 Jul 20.
7
Transportability of Trial Results Using Inverse Odds of Sampling Weights.
Am J Epidemiol. 2017 Oct 15;186(8):1010-1014. doi: 10.1093/aje/kwx164.
8
Conditional cross-design synthesis estimators for generalizability in Medicaid.
Biometrics. 2023 Dec;79(4):3859-3872. doi: 10.1111/biom.13863. Epub 2023 May 1.
9
Overview of the epidemiology methods and applications: strengths and limitations of observational study designs.
Crit Rev Food Sci Nutr. 2010;50 Suppl 1(s1):10-2. doi: 10.1080/10408398.2010.526838.
10
Alternative monotonicity assumptions for improving bounds on natural direct effects.
Int J Biostat. 2013 Jul 26;9(2):235-49. doi: 10.1515/ijb-2012-0022.

引用本文的文献

1
Sensitivity Analyses for Means or Proportions with Missing Outcome Data.
Epidemiology. 2023 Sep 1;34(5):645-651. doi: 10.1097/EDE.0000000000001627. Epub 2023 May 9.
3
Toward a Clearer Definition of Selection Bias When Estimating Causal Effects.
Epidemiology. 2022 Sep 1;33(5):699-706. doi: 10.1097/EDE.0000000000001516. Epub 2022 Jun 6.
4
Reflection on modern methods: combining weights for confounding and missing data.
Int J Epidemiol. 2022 May 9;51(2):679-684. doi: 10.1093/ije/dyab205.
5
Target validity: Bringing treatment of external validity in line with internal validity.
Curr Epidemiol Rep. 2020 Sep;7(3):117-124. doi: 10.1007/s40471-020-00239-0. Epub 2020 Jun 30.
6
Effect heterogeneity and variable selection for standardizing causal effects to a target population.
Eur J Epidemiol. 2019 Dec;34(12):1119-1129. doi: 10.1007/s10654-019-00571-w. Epub 2019 Oct 26.

本文引用的文献

1
Target Validity and the Hierarchy of Study Designs.
Am J Epidemiol. 2019 Feb 1;188(2):438-443. doi: 10.1093/aje/kwy228.
2
Generalizing Study Results: A Potential Outcomes Perspective.
Epidemiology. 2017 Jul;28(4):553-561. doi: 10.1097/EDE.0000000000000664.
3
Causal Impact: Epidemiological Approaches for a Public Health of Consequence.
Am J Public Health. 2016 Jun;106(6):1011-2. doi: 10.2105/AJPH.2016.303226.
5
On the consistency rule in causal inference: axiom, definition, assumption, or theorem?
Epidemiology. 2010 Nov;21(6):872-5. doi: 10.1097/EDE.0b013e3181f5d3fd.
6
Concerning the consistency assumption in causal inference.
Epidemiology. 2009 Nov;20(6):880-3. doi: 10.1097/EDE.0b013e3181bd5638.
7
The consistency statement in causal inference: a definition or an assumption?
Epidemiology. 2009 Jan;20(1):3-5. doi: 10.1097/EDE.0b013e31818ef366.
8
Estimating causal effects from epidemiological data.
J Epidemiol Community Health. 2006 Jul;60(7):578-86. doi: 10.1136/jech.2004.029496.
9
A definition of causal effect for epidemiological research.
J Epidemiol Community Health. 2004 Apr;58(4):265-71. doi: 10.1136/jech.2002.006361.
10
Causal diagrams for epidemiologic research.
Epidemiology. 1999 Jan;10(1):37-48.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验