Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States.
Univ. Rennes, CNRS , ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 , F-35000 Rennes , France.
Inorg Chem. 2019 Mar 18;58(6):3764-3773. doi: 10.1021/acs.inorgchem.8b03347. Epub 2019 Mar 5.
Two coordination polymers of the type Co(BPDC)(N-ox), with BPDC being 4,4'-biphenyldicarboxylate and N-ox being pyridine N-oxide (PNO) or isoquinoline N-oxide (IQNO), have been synthesized and characterized. The compounds feature 2D and 3D metal-organic networks that encapsulate Co(II)-based chains in a rigid superstructure. The dc and ac magnetic properties of these Co(BPDC)(N-ox) materials have been investigated alongside those of a related Co(BDC)(PNO) compound (where BDC is 1,4-benzenedicarboxylate), which contains a smaller dicarboxylate linker. These Co(II)-containing coordination polymers exhibit slow magnetic relaxation, as observed by ac susceptibility measurements. The observed magnetic behavior of all compounds is consistent with an antiferromagnetic interaction between canted Co spins along the 1D skeleton, resulting in single-chain magnet behavior. In the case of Co(BPDC)(IQNO), weak interchain magnetic interactions yield 3D antiferromagnetic order while the inherent magnetic behavior stemming from the chain component is maintained. The combination of these effects in this material puts it at the frontier between single-chain magnets and classical bulk antiferromagnets. This work contributes to the limited group of materials featuring the organization of single-chain magnets within a coordination polymer superstructure.
两种类型的钴配合物 Co(BPDC)(N-ox),其中 BPDC 是 4,4'-联苯二甲酸二羧酸酯,N-ox 是吡啶 N-氧化物 (PNO) 或异喹啉 N-氧化物 (IQNO),已经被合成和表征。这些化合物具有二维和三维的金属-有机网络,将基于 Co(II)的链封装在刚性超结构中。这些 Co(BPDC)(N-ox)材料的直流和交流磁性能与具有较小二羧酸酯配体的相关 Co(BDC)(PNO)化合物(其中 BDC 是 1,4-苯二甲酸二羧酸酯)的磁性能进行了研究。这些含 Co(II)的配位聚合物通过交流磁化率测量表现出缓慢的磁弛豫。所有化合物的观察到的磁行为都与沿一维骨架的倾斜 Co 自旋之间的反铁磁相互作用一致,导致单链磁行为。对于 Co(BPDC)(IQNO),弱的链间磁相互作用导致 3D 反铁磁序,同时保持链组分的固有磁行为。这种材料中这些效应的结合使其处于单链磁体和经典体相反铁磁体之间的前沿。这项工作为具有配位聚合物超结构中单链磁体组织的有限材料组做出了贡献。