Yesilkoy Filiz, Terborg Roland A, Pello Josselin, Belushkin Alexander A, Jahani Yasaman, Pruneri Valerio, Altug Hatice
Institute of BioEngineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain.
Light Sci Appl. 2018 Feb 23;7:17152. doi: 10.1038/lsa.2017.152. eCollection 2018.
Nanophotonics, and more specifically plasmonics, provides a rich toolbox for biomolecular sensing, since the engineered metasurfaces can enhance light-matter interactions to unprecedented levels. So far, biosensing associated with high-quality factor plasmonic resonances has almost exclusively relied on detection of spectral shifts and their associated intensity changes. However, the phase response of the plasmonic resonances have rarely been exploited, mainly because this requires a more sophisticated optical arrangement. Here we present a new phase-sensitive platform for high-throughput and label-free biosensing enhanced by plasmonics. It employs specifically designed Au nanohole arrays and a large field-of-view interferometric lens-free imaging reader operating in a collinear optical path configuration. This unique combination allows the detection of atomically thin (angstrom-level) topographical features over large areas, enabling simultaneous reading of thousands of microarray elements. As the plasmonic chips are fabricated using scalable techniques and the imaging reader is built with low-cost off-the-shelf consumer electronic and optical components, the proposed platform is ideal for point-of-care ultrasensitive biomarker detection from small sample volumes. Our research opens new horizons for on-site disease diagnostics and remote health monitoring.
纳米光子学,更具体地说是等离子体激元学,为生物分子传感提供了丰富的工具箱,因为经过工程设计的超表面可以将光与物质的相互作用增强到前所未有的水平。到目前为止,与高品质因子等离子体激元共振相关的生物传感几乎完全依赖于光谱位移及其相关强度变化的检测。然而,等离子体激元共振的相位响应很少被利用,主要是因为这需要更复杂的光学装置。在此,我们展示了一种新的基于等离子体激元增强的高通量无标记生物传感的相位敏感平台。它采用了专门设计的金纳米孔阵列和一个在共线光路配置下运行的大视场无透镜干涉成像读取器。这种独特的组合能够检测大面积上原子级薄(埃级)的地形特征,从而实现对数千个微阵列元件的同时读取。由于等离子体激元芯片采用可扩展技术制造,且成像读取器由低成本的现成消费电子和光学元件构建而成,因此所提出的平台非常适合从小样本体积中进行即时超灵敏生物标志物检测。我们的研究为现场疾病诊断和远程健康监测开辟了新的视野。